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ABSTRACT

The successful evolution of a power system is achieved when its future growth path is

visualized. Visualizing and interpreting the future are crucial to understand the risks to which

the power system is exposed. These are mostly caused by the interdependencies between the

power system and other systems (e.g., transportation sector, fuels sector, industry, etc.); and

the resulting uncertain environment where these systems perform. Then, the objectives of

planning are to reduce the risks of uncertainties and to gain some control over the future by

linking it with the past; otherwise risks might materialize in catastrophic consequences.

In particular, motivated by the need of mitigating future risks in power systems, this work

focuses on finding robust and flexible investment strategies in the generation capacity expan-

sion planning problem under exposure to multiple uncertainties. They are present in different

sources and types such as fuel costs, investment and operational costs, demand growth, renew-

ables variability, transmission capacity, environmental policies, and regulation. The problem

when considering multiple uncertainties is much harder, not only because the increased com-

putational effort, but also because it is hard to model the combination of their occurrences in

a single optimization problem.

Since each uncertainty deserves special treatment, they are grouped into two categories.

Those (categorical) uncertainties that really impact the portfolio investment decisions are clas-

sified as global; whereas those that quantitatively describe the intrinsic imperfect knowledge

of the categorical are considered local uncertainties. So, to effectively account for robustness,

defined as the ability to perform well under unforeseen situations, and flexibility, defined as

the ability to adapt cost-efficiently to different situations, modern tools are illustrated and im-

plemented in a computationally tractable manner, resulting in promising planning tools under

uncertainty.
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CHAPTER 1. OVERVIEW

1.1 Motivation

At any point in time, the world is changing and so are all of its components. Any society,

country, or productive process continuously searches growth to meet special needs and require-

ments. Growth can be measured with economic indicators, or can be observed in terms of

bigger infrastructure, or for some it can be perceived through increased consumption habits.

The successful evolution of these systems is achieved when humans attempt to visualize what

their future growth path will look like. However, in order to better visualize and quite interpret

the future, it is crucial to understand there are situations and challenges that interact with ev-

ery system, and that somehow they need to be overcome and thus avoid undesired catastrophic

future situations.

Many of these situations and challenges come from the uncertain environment where every

system performs. In particular, the power sector is one of those systems that needs special

attention regarding both its evolution path and potential risks it might face. Currently, elec-

tricity has become more important and is a commodity every single person and sector is more

dependent on. Electricity uses span from charging a battery of a personal computer to elec-

trifying the transportation system. This wide spectrum of power demands create beneficial

interdependencies between the power system with the rest of the world; but, at the same time

the risks faced by “the rest of the world” are also transferred to the power sector.

Risk, understood as a situation exposed to potential danger, is present as long as more

things remain unknown or are out of control. Unfortunately, apart from the future, there is

plenty of incomplete knowledge and/or randomness regarding the forces that drive the econ-

omy, consumption patterns, politics, among many others (resource availability, weather). And
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Figure 1.1: Natural gas price AEO

the current power sector, is exposed to these risks via its interdependencies with these other

systems.

In particular, power demand, fuel prices, penetration of new technology, investment costs,

market rules, future of fossil fuel generation technologies, power demand of transportation

sector, renewable resources, and environmental isssues are some uncertainties to which the

current US power system is exposed. For instance, Fig. 1.1, taken from Conti et al. (2012),

displays the past and possible future trends in natural gas price depending on the US economic

growth. Natural gas price has notably reduced in the last two years compared to what it was in

2005 for example. This has motivated the power sector to think of an electricity portfolio heavily

composed of natural gas based power plants. Power demand has been growing continuously but

at lower rates. According to the Anual Energy Outlook (AEO) 2012 of the Energy Information

Administration (EIA), in the last decade, it has grown only at 0.7%. Increment of sales of

both plug-in hybrid and electric cars, and user travel patterns altogether, have the potential

to increase the power demand.

Policy has also impacted the state of the power sector. In the US, Federal and State

regulations have been incorporated recently. For instance, the Cross-State Air Pollution Rule

is a cap-and-trade system for SO2 and NOx emissions; the California Assembly Bill 32 is

a cap-and-trade system for reducing greenhouse gas (GHG) emissions from 2013 to 2020; the

Renewable Energy Production Tax Credit is an incentive that allows an income (tax credit) per
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unit of electric energy produced by renewable resources; and the Renewable Portfolio Standards

determines the minimum levels of electricity to be produced by renewables in 30 states.

The current power system capabilities are not well suited to satisfy all requirements of the

future. The requirements can be summarized as continuous satisfaction of increasing demand,

cleaner power, low retail electricity prices, and resilient operation in the face of unforeseen

events. These requirements indicate that a continuous planning must be performed to keep

track of economic, societal, and political conditions. In Conti et al. (2012), for example, EIA

has projected that most of the capacity additions between 2011 and 2025 will come mainly

from natural gas given the high construction costs of other technologies and the uncertainty in

GHG emission policies; and that the rest of the capacity additions will come from renewables

and clean-coal units.

In general, the objectives of a planning task are to reduce the risks of uncertainties and

to gain some control over the future by linking it with the past. A successful plan should

assess what the risks are if the resulting decisions are implemented, and it should also predefine

alternative strategies in case conditions change dramatically. The success in performance and

growth of the power sector depends on how the system is planned under uncertainty. However,

given the multiple sources of uncertainty, it is difficult to develop a successful plan which

accounts for those uncertainties effectively.

The effect on the system of each uncertain situation or scenario can lead the decision maker

to extreme decisions. Fig. 1.2 illustrates that if today’s system is taken, for instance, in the

direction of scenario 2, the future system can be under significant risk if the realized scenario

is actually pointing towards opposite directions like scenarios 5 or 6. It is important, from the

decision maker’s standpoint, to understand what the future system will look like under different

circumstances, and his/her actual decisions must be the outcome of careful analysis and risk

mitigation techniques. An usual assumption in most of uncertainty modeling applications is the

complete knowledge of scenarios. When studying cases under different scenarios, there might

be another hidden level of uncertainty. For instance, if one scenario considers low gas price,

e.g., $4/MMBTU1, and another considers high gas price, e.g., $8/MMBTU, there is an implicit

11 MMBTU = 1 million British thermal unit (BTU)
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assumption of complete knowledge of both scenarios. But, is there any reason why a high gas

price assumption could not be either $7.5/MMBTU or $8.9/MMBTU? Probably the answer is

no. With the traditional mathematical tools it has been computationally expensive to address

this issue; but, modern optimization tools can. This motivates the work of this dissertation in

considering another level of uncertainty in scenario analysis.

The diverse uncertainty space faced by the power sector makes this decision-making problem

hard to solve. Uncertainties should not be treated in the same way. Some can be modeled

statistically by using historical information, e.g. fuel prices, power demand; and others have

never occurred therefore there is no any information to characterize its behavior, e.g., regulation

regarding renewables and/or GHG emissions. In addition, there is also a set of tools that have

been employed to handle uncertainties; however, some of them have limitations regarding the

number of uncertainties, or the dimensionality of the uncertainty space. The intention of this

work is to develop new strategies that can be implementable for performing power system

planning under multiple uncertainties.
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1.1.1 Description of the problem

This work is commited to study the CEP problem under presence of different types and

sources of uncertainty. In this context, the CEP problem consists of identifying the most

cost-efficient energy portfolio balancing robustness and flexibility, i.e., to determining optimal

investments in time and location of the best generation technologies that satisfy the future

energy needs with minimum levels of risk, considering technical and environmental constraints,

and multiple sources and sizes of uncertainty.

1.2 Objectives

The purposes of this work are to study the effects of uncertainties in the generation capacity

expansion planning problem, and to identify and design the more suitable methodologies for

uncertainty modeling in long–term planning. Suitable methodologies are those that: are not

very sensitive to the assumptions made by the decision maker; can handle multiple sources

of uncertainty and mitigate multiple kinds of risk; and are computationally tractable. In

particular, the specific goals are to:

1. Provide a classification of uncertainties observed in the CEP according to their impact

on the power system;

2. Develop expansion planning techniques capable of providing results that are economically

feasible and robust to multiple sources of uncertainty data;

3. Develop expansion planning techniques capable of providing results that are economically

feasible and flexible to multiple sources of high-impact uncertainties;

4. Improve the computational performance of the resulting models by the implementation

of multi-stage decomposition methodologies.

The entire work is built using a capacity expansion model that provides the investment

decisions needed to satisfy future energy needs and operational constraints modeled as a direct

current optimal power flow (DCOPF). Since most of this work deals with a 40-year planning
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horizon, it would be computationally intensive to consider the operation of the system hour by

hour. As an approximation, the operation of the system is considered for three different periods

per year using the so-called load duration curve (LDC). To the DCOPF, we have provided

features that add realism to the solution like maximum capacity factor and capacity credit.

The first limits the the energy produced by each technology in a year; and the second limits

the production of renewables like wind and solar according to the time of the day.

Throughout this work, multiple sources, types and amounts of uncertainties have been used.

Investment cost, fuel prices, demand, capacity factor, capacity factor, transmission capacity,

and environmental regulation, are some of the uncertainties considered. However, to properly

model them, uncertainties are classified according to the impact on the results of running the

planning tool. For instance, when changes in some data or parameter produce a significant

different trend in the portfolio, that parameter is called a global uncertainty. Examples of

global uncertainties are the implementation of emissions policies, important shifts in demand,

unavailability of a resource such as coal or natural gas, regulation regarding nuclear plants

operation, an important drop in investment costs, among others. To model the imperfect

knowledge of the global parameter, local uncertainties are used and parameterized through

uncertainty sets. In statistical terms, a local uncertainty is similar to a dependent random

variable.

Each uncertainty type deserves special attention. In the case of local uncertainties, whose

representation is valid via uncertainty sets, RO is a suitable tool. Under RO, the CEP can

be impacted by different sources and sizes of uncertainty. However, when the CEP results are

very sensitive to some uncertainty, RO is not appropriate. Although robustness in a solution is

crucial, it can be too expensive. That is the reason why under global uncertainties, the concept

of flexibility in planning is much more useful and practical. Basically, it is a criterion imposed

to the CEP that ensures the final solution can be continuously adapted to the conditions of

different scenarios at minimum cost. However, there is a tradeoff between investment and

adaptation cost that needs to be considered: costly portfolios are quite robust and need little

adaptation to other scenarios; conversely, low-cost portfolios are not robust and incurr in high

costs in adapting to other scenarios.
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Each of the planning solutions are tested for robustness via Monte Carlo simulation. It is

interesting how, without extreme differences in the solutions, the uncertainty-based solutions

always outperform the deterministic ones in terms of risk at little additional investment cost.

The kind of tools presented in this work are computationally applicable to real power

systems because they can handle multiple uncertainties. This feature is not achieved even by

traditional tools like Stochastic Programming (SP). Also, constructing uncertainty sets only

requires the bounds of the uncertain parameters, compared to SP which requires processing

more information to obtain probability distributions. In cases where uncertainties are not

parameterizable by these sets, modeling flexibility in planning is a promising new concept in

that portfolios can adapt to different scenarios at minimum cost. Decision makers, investors,

government agencies can take adavantage of these types of methodologies to analyze the effect

of new policies and the risk exposure of the system. Also, Independent System Operators can

use these methodologies to assess the risks in a more rigorous way. Furthermore, optimization

based planning tools under uncertainty are useful for providing signals regarding the fields in

which technology development and research efforts need to be made.

1.3 Thesis organization

This chapter presents the motivating aspects of doing this work and its objectives. Chapter

2 is a literature review of the traditional and modern tools used in decision–making problems

under uncertainty. Chapter 3 presents a paper that explains some concepts of RO and its im-

plementation in the planning of power system. Chapter 4 presents a RO model applied to the

CEP that uses affine decision rules as function of uncertainties for decreasing the conservatism

level of the solution. Chapter 5 shows how the model proposed in Chapter 4 is transformed

such that it can be solved alternatively by a decomposition method called dual dynamic pro-

gramming. Chapter 6 presents a methodology that involves the modeling of global and local

uncertainties jointly through the concept of flexibility. Finally, chapter 7 discusses the major

findings of this work and provides research directions.
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CHAPTER 2. REVIEW OF LITERATURE

For over 50 years, researchers have been thinking about solving optimization problems

under presence of uncertainty; as a result, a diverse world of methods and philosophies have

been studied. This chapter summarizes the basic elements of the methods that will be more

prevalent in this work and the most significative efforts in the field, emphasizing those used in

power system applications.

2.1 Sensitivity Analysis

Traditionally, Sensitivity Analysis (SA), has been an essential approach for identifying

the influence on simulation caused by changes in input data. Most research fields utilize SA

to better understand results. In the field of optimization in particular, it can be seen as a

post-optimization tool. A SA does not alter the problem structure, it only provides different

parameters to the actual optimization problem. This approach does not provide a solution that

is protected against unforeseen uncertainties in general. Yet, SA does provide a preliminary

understanding of the effects, which is valuable. It is possible that some people make decisions

combining different results obtained by SA. In conclusion, nothing but sensitivities can be

obtained using a SA method simply because that is its unique purpose.

2.2 Stochastic Programming

SP has been widely used as powerful tool that does include an uncertainty model into the

mathematical formulation of the problem. Basically, by making use of probability distributions

of uncertain data, an stochastic program considers the minimization of the expected costs as

explained in Shapiro et al. (2009), Birge and Louveaux (2009). In some applications, it also



www.manaraa.com

9

considers the minimization of a risk measure as in Malcolm and Zenios (1994). For multi-

stage problems, it requires the structure of a scenario tree by approximating each random

variable with a fixed number of samples. Besides uncertainty approximation, the most critical

disadvantage that impedes development of realistic applications is the exponential growth of

the number of scenarios with the number of time steps, making the problem computationally

intractable in general (Ben-Tal and Nemirovski (1998), Ben-Tal et al. (2009)).

Under perfect foresight, the objective function has a defined value under a decision; but,

under random data, there are several outcomes. In the SP setup, a decision maker prefers to

optimize the average cost. Sometimes, decision makers face the problem of making a “safe”

decision no matter what the outcomes are. This constitutes a risk-averse attitude and results

in high-cost decisions. To reduce costs, decision makers can accept small levels of risk in their

decisions by properly penalizing the recourse variables.

One of the ways to address these issues is by using two-stage stochastic programs. The

decision maker needs to make here-and-now decisions (which cannot wait until data is revealed)

and, wait-and-see decisions (those that are implemented once data is observed). In the context

of power systems, here-and-now decisions are the generation levels for each unit in the grid

resulting from the economic dispatch problem. These levels are scheduled before actual demand

is observed. And wait-and-see variables are, for instance, voltage angles, which are the result of

a particular demand value. Within an expansion planning problem, here-and-now decisions are

the t = 0 investment decisions. These need to be implemented before the multiple uncertainties

are observed. The rest of variables that complete the description of a planning model, e.g., the

t > 0 investment decisions, are wait-and-see variables.

Mathematically, a general two-stage program model is (Shapiro et al. (2009))

minimize
x∈<n

c>x+ E [Q (x, ξ)]

subject to Ax ≤ b

where x are the here-and-now variables, and the function Q(x, ξ) is the optimal value of the

second stage program. ξ represents the randomness with known distribution.
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Figure 2.1: Scenario trees in stochastic programming

minimize
y(ξ)∈<m

q (ξ)> y (ξ)

subject to T (ξ) x+W y (ξ) ≤ h (ξ)

(2.1)

Model (2.1) represents the model of the second stage for a specific data realization ξ. Its

decision vector y is called recourse. The set of inequalities Tx ≤ h represent the constraints of

the second stage; however, if decisions x do not satisfy them, the recourse variables compensate

the inconsistency through Wy. Therefore, q>y is the cost of recourse.

In two-stage power system planning, assuming uncertain demand, x represents the capacity

investment decisions that need to be made before demand is revealed. The recourse variables

represent all the optimal power flow (OPF) decision variables under each demand scenario.

However, since there exists the risk that demand cannot be met in the actual operation with

the x decisions, another set of variables composed of demand deficits is also part of the recourse

vector y. Thus, q represents the cost of both the energy deficit and operation.

Usually, uncertain data are sampled to create scenarios. In this case, the model (2.1) is

replicated as many times as scenarios. This is an issue in the general multi-period case where

the number of combinations of uncertainty realizations increases exponentially in time. For

instance, Fig. 2.1 shows that the observation of a binary random variable with values H and

L during 3 periods yields to 23 = 8 total scenarios. Also, each scenario needs a representation
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of the system under study which in turn will also increase dramatically the problem size.

Realistic applications would have astronomical number of scenarios. To handle this, scenario

sampling techniques have been used. Refer to the books of Kall and Wallace (1994); Prékopa

(1995); Birge and Louveaux (2009); Shapiro et al. (2009) for deeper understanding of stochastic

programming.

2.3 Robust Optimization

Besides stochastic programming, RO has emerged as a promising research area in operations

research literature like Ben-Tal and Nemirovski (1998), Ben-Tal et al. (2009), Ben-Tal and

Nemirovski (1999), Ben-Tal and Nemirovski (2000), Ben-Tal and Nemirovski (2002), Bertsimas

and Sim (2003), Bertsimas and Sim (2004), Sim (2004), Bertsimas et al. (2011a). References

Ben-Tal et al. (2009) and Ben-Tal and Nemirovski (2002) discuss the potential RO has of being

applicable in many disciplines. The work in Bertsimas et al. (2011a) mentions that robust

optimization is being used in antenna design, integrated circuit design, network flows and traffic

management, wireless networks, robust control, model adaptive control, portfolio management,

inventory control, statistics and parameter estimation. Bertsimas and Sim (2003) show the

mathematical formulation for combinatorial optimization and network flow problems, and Alem

and Morabito (2012) present an application of RO in production planning considering demand

and cost uncertainties. The work in Verderame and Floudas (2011) is an operational planning of

a multi-site production and distribution network considering demand and transportation time

uncertainty. The work of Soyster (1973) was the first attempt to consider a linear program

with box–shaped uncertainty in the parameters of the linear constraint. However, it was up to

the late 90’s that the area became popular with the works of Ben-Tal and Nemirovski.

Unlike SP, RO avoids the representation of scenario trees and the sampling process; rather,

it assumes that the uncertainty space of data is constrained to an uncertainty set and finds the

best solution that is feasible for all the realizations of uncertainties that lie in the uncertainty

space under consideration. Fig. 2.2 shows how an ellipsoidal uncertainty set is used to approx-

imate uncertain data. However, neither is this ellipsoidal shape a requirement nor many data

points are needed to create the sets. When data points are few, one can create a box-shaped
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Figure 2.2: From data to uncertainty sets

set to be “safe.”

Increasing the “safety” or robustness will definitely worsen the objective function, this is

what Bertsimas and Sim (2004) call the price of robustness. This price is higher as long as

the solution becomes more conservative (robust); however, the level of conservatism can be

controlled according to the risk preferences of the decision-maker. The work in Bertsimas and

Sim (2004) also presents the RC of cardinality constrained uncertainty where the conservatism

level, defined by their uncertainty budget, is controlled by the number of uncertain parameters

that actually vary from their nominal values. This type of formulation is promising when

dealing with contingencies in security-related applications.

In this section, we show how an optimization problem with uncertain data characterized by

uncertainty sets is transformed to its RC. In order to explain RO and its underlying guidelines,

we use the main concepts adapted from Ben-Tal et al. (2009).

Consider the following uncertain linear program:

minimize
x∈<n

c>x

subject to a>i x ≤ bi, i = 1, . . . ,m.

(A, b, c) ∈ U = UA × Ub × Uc

(2.2)

A ∈ <m×n, b ∈ <m, and c ∈ <n are arrays of uncertain parameters that lie in a convex

uncertainty set U defined on <m×n × <m × <n as the cartesian product of each uncertain
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parameter uncertainty set. It is assumed that each a ∈ [ā − â, ā + â], b ∈ [b̄ − b̂, b̄ + b̂], and

c ∈ [c̄ − ĉ, c̄ + ĉ], where â, b̂ and ĉ are the maximum variations of a, b, and c with respect to

their nominal values ā, b̄, and c̄, respectively.

The RO approach deals with finding a solution to the linear program (2.2) such that it

is feasible under any realization of the uncertain parameters. When the parameters are not

only considered uncertain but also random, i.e. they have a probability distribution, the RO

formulation is still applicable. In fact, references Bertsimas and Sim (2004), and Ben-Tal et al.

(2009) use a probability indicator to measure the level of satisfaction of the constraint. In this

case, RO and chance-constrained optimization become highly related (see Section 2.5).

From here, without loss of generality, we will consider the linear program (2.2) with only

one constraint of the form a>x − b ≤ 0. In general, a RO problem is solved by solving the

following model:

minimize
x

sup c>x
c∈Uc

subject to sup
(a,b)∈Ua×Ub

(
a>x− b

)
≤ 0

(2.3)

This formulation ensures that under any observation of uncertainty within the bounds

defined by U , the solution will be feasible. Furthermore, the minimization of the maximum

value of the objective function, known as the worst-case scenario, is implemented; therefore,

the optimal objective function is indeed an upper bound of the actual objective value given the

uncertainty represented in c.

Without loss of generality, we are only considering uncertainty in a and b. By using affine

perturbations η ∈ Z where ak = āk + ηkâk, k = 1, . . . , n, and b = b̄+ ηn+1b̂, the linear program

(2.3) can be written as:

minimize
x

c>x

subject to
n∑
k=1

ākxk − b̄+ sup
η∈Z

(
n∑
k=1

ηkâkxk − ηn+1b̂

)
≤ 0

(2.4)

It is important to appropriately choose the primitive uncertainty set Z. This selection will

yield a different structure of the problem (2.4).
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Figure 2.3: Usual uncertainty Sets

In each case Ω is known as the uncertainty budget. This parameter is used to tune the

amount of uncertainty modeled in the problem. This parameter is necessary when â, b̂, and ĉ

are only an approximation of the data bounds, and therefore, risk level has to be controlled.

For the case Ω = 1, the uncertainty set bounds are exactly the data bounds. So, the larger the

Ω, the more uncertainty modeled; therefore, the less risky the solution will be and vice versa.

The intuition here is if the “size” (area, volume, etc.) of the uncertainty is large —usually

Ω > 3, the decision vector x will be more protected against dangerous realizations of data.

Figure 2.3 graphically shows the shape of these three types of uncertainty sets Z when the

uncertainty is two-dimensional.

Now, in order to find a tractable way of solving the problem (2.4), it is necessary to find an

analytical solution (if any) of the optimization subproblem with decision variables η1 to ηn+1.

Of course, for every selection of Z, there will exist a solution, and the equivalent deterministic

optimization problem (2.4) or RC will have a different structure.

2.3.1 Box Uncertainty

The primitive uncertainty set is defined as

Z =
{
η ∈ <n+1, ‖η‖∞ ≤ 1

}
=
{
η ∈ <n+1, |ηk| ≤ 1, k = 1, . . . , n+ 1

}
The optimization of the second-level problem in (2.4) with respect to the disturbance vector
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η is a linear program, and its solution is

η∗k =
|xk|
xk

=



1 , if xk > 0,

0 , if xk = 0,

−1 , if xk < 0,

and η∗n+1 = −1.

Therefore, the robust counterpart of (2.4) is

minimize
x

c>x

subject to

n∑
k=1

ākxk +

n∑
k=1

âk |xk|+ b̂ ≤ b̄

or equivalently

minimize
x

c>x

subject to ā>x+ Ω
∥∥∥[Â x; b̂

]∥∥∥
1
≤ b̄

(2.5)

Â is a diagonal matrix of âk elements.

However, in order to maintain feasibility and/or robustness, optimality of the solution can

be lost at a significant level. The decision maker would end up paying too much for protecting

its solution against any uncertainty realization in the box. Indeed, this is considered the most

conservative or risk averse uncertainty set in the sense that the model considers the worst case

possible values of data. In applications involving large amounts of data, it is not straightforward

to determine the the worst-case combinations of data. Under the box uncertainty set, it is not

necessary to explicitly specify the worst-case scenario, model (2.5) takes care of that.

2.3.2 Ellipsoidal Uncertainty

The primitive uncertainty set is written as

Z =
{
η ∈ <n+1, ‖η‖2 ≤ Ω

}
=

{
η ∈ <n+1,

√
η2

1 + η2
2 + . . .+ η2

n+1 ≤ Ω

}
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The optimization of the second-level problem in (2.4) with respect to the uncertain vector

η belonging to an ellipsoidal uncertainty is a simple convex optimization problem. It has an

analytical solution given by

η∗k =
âkxk√∑n

j=1 â
2
jx

2
j + b̂2

Ω, k = 1, . . . , n

η∗n+1 = − b̂√∑n
j=1 â

2
jx

2
j + b̂2

Ω

Therefore, the robust counterpart of (2.4) is

minimize
x

c>x

subject to

n∑
k=1

ākxk + Ω

√√√√ n∑
k=1

â2
kx

2
k + b̂2 ≤ b̄

or equivalently

minimize
x

c>x

subject to ā>x+ Ω
∥∥∥[Â x; b̂

]∥∥∥
2
≤ b̄

(2.6)

2.3.3 Manhattan Uncertainty

The primitive uncertainty set is represented as

Z =
{
η ∈ <n+1, ‖η‖1 ≤ Ω

}
=
{
η ∈ <n+1, |η1|+ |η2|+ . . .+ |ηn+1| ≤ Ω

}
The optimization of the second-level problem in (2.4) with respect to the uncertain vector

η is a linear program, and its solution is therefore an extreme point of the uncertainty set:

η∗k =


Ω , if k = j,

0 , if k 6= j

and the j-th component is chosen such that

tj = max
(
â1 |x1| , . . . , ân |xn| , b̂

)
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Then, the RC of (2.4) becomes

minimize
x

c>x

subject to
n∑
k=1

ākxk + Ω max
(
â1 |x1| , . . . , ân |xn| , b̂

)
≤ b̄

or equivalently

minimize
x

c>x

subject to ā>x+ Ω
∥∥∥[Â x; b̂

]∥∥∥
∞
≤ b̄

(2.7)

The resulting RCs correspond to different types of optimization problems. When using the

box and Manhattan uncertainty sets, the RCs (2.5) and (2.7) are still linear programs; if slight

modifications (including auxiliary variables and constraints) are made, that can be seen more

clearly. But, the ball uncertainty yields a convex nonlinear program (2.6), more specifically, a

second order cone program. More remarkable, each of these RCs are computationally tractable.

2.3.4 Polyhedral uncertainty

In Bertsimas et al. (2011a), the RC is developed for a general polyhedral uncertainty set as

follows:

minimize
x

c>x

subject to max
Diai≤di

a>i x ≤ bi, ∀i = 1, . . . ,m

(2.8)

Assume uncertainty comes from vectors ai, ∀i = 1, . . . ,m. The matrix Di define the polyhe-

dron of uncertain data involved in the i-th constraint. To obtain the RC, duality arguments are

used. The dual problem of the second-level optimization corresponding to the i-th constraint

maximize
ai

a>i x

subject to Diai ≤ di : πi

is given by
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maximize
πi

d>i πi

subject to D>i πi = x

πi ≥ 0

Then, the RC of (2.8) becomes

minimize
x, π

c>x

subject to d>i πi ≤ bi, ∀i = 1, . . . ,m

D>i πi = x, ∀i = 1, . . . ,m

πi ≥ 0, ∀i = 1, . . . ,m

(2.9)

This formulation holds even for the cases when data vector a is random but bounded by a

polyhedral uncertainty set.

2.3.5 Random bounded data

Let ā = E a and Σ = E (a− ā) (a− ā)>. ā and Σ are the expected value and the covariance

matrix of the random vector a respectively. If η is assumed to be an uncorrelated random

vector with E η = 0 and E η η> = I, a can be expressed as

a = ā+ Σ1/2η, η ∼ (0, I)

The robust counterpart becomes

minimize
x

c>x

subject to max
Diai≤di,ai∼(ā,Σ)

a>i x ≤ bi, ∀i = 1, . . . ,m
(2.10)

The RO problem (2.10) can be posed in terms of the disturbance vectors ηi as follows:

minimize
x

c>x

subject to a>i x+ max
DiΣ

1/2
i ηi≤di−Diāi

η>i Σ1/2x ≤ bi, ∀i = 1, . . . ,m
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And applying the results of Bertsimas et al. (2011a) regarding polyhedral uncertainty sets, the

RC of (2.10) becomes

minimize
x, π

c>x

subject to a>i x+ (di −Diāi)
> πi ≤ bi, ∀i = 1, . . . ,m(

DiΣ
1/2
i

)>
πi = Σ

1/2
i x, ∀i = 1, . . . ,m

πi ≥ 0, ∀i = 1, . . . ,m

which is exactly (2.9) because the equality becomes D>i πi = x given the symmetry of Σ1/2.

Thus, results in (2.9) hold for random data under any probability distribution with any

second moments. Based on this analysis, what actually matters is the geometric shape of the

uncertainty set. The domain of the uncertainties is what matters for the model rather than

the actual support of the distribution.

When the decision maker is well informed and has a good representation of the uncertainties

in terms of probability distributions, chance-constrained optimization models can be more

useful as will be discussed in Section 2.5.

2.4 Adjustable Robust Optimization

A RO solution has a significant conservatism level in order to maintain feasibility; and in

multistage optimization, a robust solution might be even more conservative since all decisions

(for all periods) are made at time zero to guarantee present and future feasibility. It would be

useful for a delay in time before analyzing some revealed information to improve the decisions.

This idea helps to avoid extra-conservatism and improve flexibility in the optimization. To

develop this idea, like two-stage SP, the actual decisions, i.e., here and now and wait and

see decision variables have to be differentiated. An approach that develops this methodology

combined with a robust formulation of the problem is the so-called ARO in Ben-Tal et al.

(2009) and Ben-Tal et al. (2004), or adaptable robust optimization in Caramanis (2006). The

works presented by Chen et al. (2007) and Chen et al. (2008) show applications of ARO in SP.

The way decisions are made in ARO is by arbitrarily constructing decision rules that are
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function of past or revealed information. This process allows decisions to adjust according

previous realization of uncertainties, which is similar to the idea of nonanticipativity conditions

in stochastic programming. Decision rules are set only for the wait-and-see variables such that

they can take corrective actions to improve the bad situations that could have happened during

previous stages.

A common approximation for setting the ARO is using affine decision rules, i.e., future

investment decisions (investments in power system planning) are parameterized as affine func-

tions of observed data. Thus, the resulting optimization problem, which is still linear under

some assumptions, results in the AARC (Ben-Tal et al. (2009), Ben-Tal et al. (2004)). Among

the advantages of using the AARC is the adaptability of the solutions, the reduction of the ob-

jective function (cost minimization), computational tractability, and robustness of the solution.

This type of decision rules are also called linear decision rules (Chen et al. (2008)).

Adaptability refers to solutions that can self-adjust according to the optimal decision rule.

Deviations in data below or above the expectations during some stage(s) are inputs in the

computation of future decisions. For example, if natural gas price exceeds its price expectations,

it might be more cost-efficient to have less natural gas power capacity and more capacity

coming from other resources. A natural gas investment decision rule might teach us the same

rationale by using the AARC and making natural gas price part of the uncertainty affine

rule. Adaptability avoids making future immediate expensive decisions caused by unexpected

disturbances in data.

Apart from adaptability, the objective function is reduced. The increased number of degrees

of freedom in the ARO helps to mitigate even more the variability in constraints and objective

function, which in turn can achieve a lower cost solution compared to the RO solution (see

Chapters 4 and 5). Although the approach considers recourse, the resulting optimization

is still tractable for finite horizon problems. Finally, robustness is another goodness of this

approach. Although solutions are not known so far in advance because we have to wait until

uncertainties are observed, the feasibility of the solutions is guaranteed since the underlying

modeling technique is RO.

The work Ben-Tal et al. (2004) is one of the first that introduced the idea of adjustable solu-
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tions in optimization. Since then, several theoretical improvements and practical applications

have been reported. Caramanis (2006) presents a comprehensive development of what authors

call adaptable RO and illustrates an application of the approach on air traffic control under

weather uncertainty. Ben-Tal et al. (2005) use an AARC to study a multistage supply chain

problem under uncertainty in demand by minimization of the worst-case cost function. Adida

and Perakis (2010) present some models that incorporate uncertainty in a dynamic pricing and

inventory control problem, their AARC approach outperforms dynamic programming, static

RO, and stochastic programming. In the literature of power systems, no ARO-related works

have been officially reported. The work by Bertsimas et al. (2011b) has not been published

yet. It shows an application of adaptable robust optimization in unit commitment with load

uncertainty.

2.5 Chance-constrained optimization

When constraints are contaminated with random uncertainties in data and some of the

constraints can be relaxed to some degree, a chance-constrained optimization model is useful.

Here, the decision maker can arbitrarily choose an admissible small probability of violating the

constraint. So, his/her solution will be such that under most realizations of uncertainty, it is

feasible.

Among the first contributions in the field of chance constrained optimization are refer-

ences Charnes and Cooper (1959), Miller and Wagner (1965), Prékopa (1970), and Prékopa

(1995). Since chance-constrained optimization and robust optimization are related, Ben-Tal

et al. (2009) show safe approximations of chance constrained optimization via robust optimiza-

tion. A chance-constrained program is convex and tractable in some cases; if data are jointly

normally distributed and the admissible violation probability is less than 1/2, the problem can

be converted to a second-order cone programming problem and therefore is convex (Boyd and

Vandenberghe (2004)).

Chance-constrained and RO have a strong relationship. In RO, data do not have to be ran-

dom and the solution is worst-case oriented based on the uncertainty set. In chance-constrained

optimization, data are random and the solution is not necessarily feasible under any data re-
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alization. Rather, constraints are allowed to be violated with a small probability ε. In other

words, rather than having the usual constraint a>x ≤ b, the constraint is P (a>x ≤ b) ≥ 1− ε

is used.

In general, chance-constrained optimization problems are intractable (Ben-Tal et al. (2009)).

This is because, the inequality a>x − b ≤ 0 involves the sum of n random variables, which

implies n-dimensional integration for computing the probability. And second, the set under

which P (a>x ≤ b) ≥ 1 − ε is nonconvex in many cases. However, only a few cases have an

exact deterministic safe representation:

• b is random: b = b̄+ σb ω, ω ∼ (0, 1)

ω is any random variable with mean zero and variance one with cumulative probability

distribution Fω. The equivalent deterministic constraint is

P (a>x ≥ b) ≤ ε⇔ a>x ≤ b̄+ σbF
−1
ω (ε)

• a multivariate normal: a ∼ N (ā,Σ)

The tractability in this case comes from the fact that the quantity ā>x is a normal

random variable. Therefore, it is easy to write the deterministic constraint in terms of

the cumulative distribution of the standard normal Φ:

ā>x+ Φ−1 (1− ε)
∥∥∥Σ1/2x

∥∥∥
2
≤ b

This constraint describes a convex set as long as ε < 1/2.

• a is any distribution: a ∼ (ā,Σ)

In Ben-Tal et al. (2009) it is shown that for a random vector a under any distribution

Pa

(
a>x > b

)
≤ exp

{
−
(
b− ā>x

)2
2
∥∥Σ1/2x

∥∥2

2

}
then, if the constraint a>x ≤ b is allowed to be violated with probability ε, then the

condition

ε ≤ exp

{
−
(
b− ā>x

)2
2
∥∥Σ1/2x

∥∥2

2

}



www.manaraa.com

23

has to hold under the decision vector x. So, the approximate chance constraint can be

written as

ā>x+
√

2 ln (1/ε)
∥∥∥Σ1/2x

∥∥∥
2
≤ b

In every case, the safe version of the constraint P (a>x ≤ b) ≥ 1− ε is nothing but the mean

ā>x plust a safety term depending on ε times the standard deviation
∥∥Σ1/2x

∥∥
2
. The safety

term is usually less than 3 for ε < 0.01.

2.6 Decision theory

Probabilistic methods like stochastic programming are useful for handling random uncer-

tainties (Buygi et al. (2006)). But, these methods based on distributional assumptions might

be inappropriate in the case of nonrandom uncertainties where policies, preferences, and gov-

ernment decisions cannot be modeled in terms of distributions (Kouvelis and Yu (1997)).

However, in what there seems to be a consensus in the literature, handling nonrandom

uncertainties can be done by decision analysis theory. The main concept is that decision makers

need to look at the problem from a decision point of view rather than from an optimization

point of view. Decision makers are forced to see what is the best that could have been done if

he/she had known in advance the occurrence of a specific scenario, and his/her best solution

would be the one that shows the most similar performance to the benchmark of the scenario

Kouvelis and Yu (1997). That is, decision makers want to feel the least regret caused by not

having made the best decision under a specific scenario. Or, as it has been recently developed

in Zhao et al. (2009), decision makers have to really measure the consequences or the effort to

adapt to new circumstances by not having made the best decision; therefore, they can select

the best decision as the one requiring the least effort to adapt.

2.6.1 Regret minimization

Mathematically, the regret felt R when implementing decision x under scenario s is

R (x, s) = f (x, s)− f (x∗, s)
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where f(·) denotes an attribute that has to be minimized (cost, deficit of resource) and x∗s is

the best solution under scenario s. If R (xr, s) = 0, ∀s, then xr is said to be robust. So, a risk

averse decision maker wants to solve the following problem:

min
x

max
s

R (x, s)

The works by Gorenstin et al. (1993); Maghouli et al. (2011); Miranda and Proenca (1998a);

De la Torre et al. (1999); and Fang and Hill (2003) use the minimax regret method in scenario-

based planning problems for dealing with nonrandom uncertainties. Miranda and Proenca

(1998a) explain why the probabilistic choice is an apriori evaluation, i.e. decisions are made

before scenario occurs; whereas risk analysis tools (minimization of regrets) is a posteriori

evaluation since it is based on consequences of scenario occurrence.

The regret of a solution within a scenario is defined as the difference between the social cost

of the solution under the scenario and the social cost of the optimal solution of the scenario. A

regret equal to zero implies the solution is completely “robust” under the scenario; otherwise,

the solution fails under conditions of the scenario. Given this, regret minimization does not

require use of distributions to evaluate the performance of the solutions in different scenarios.

Miranda and Proenca (1998b) comment that probabilistic approaches are not as effective for

dealing with uncertainties as a regret minimization tool (risk analysis tool). A probabilistic

method, according to Miranda and Proenca (1998b), chooses the optimal solution based on

the average of futures with some probabilities, and therefore is riskier (allows solutions with

higher regret values for catastrophic futures); and is therefore not good from a decision-making

point of view. The risk analysis tools avoid selecting a solution with a bad performance in any

future considered. Linares (2002) explains the importance of managing risk in power systems in

order to achieve robust strategies conditional on a set of scenarios. Strategies that combine the

analysis of the solutions of individual scenarios in order to obtain the solution that best performs

in all scenarios are explained in Linares (2002) and Firmo and Legey (2002). Optimizing by

scenarios might yield to local responses, but it does help in understanding of the impact of

individual uncertainties on the system Linares (2002). However, obtaining only one solution

that covers all (or many) of the uncertainty sectors could be more important. This solution is
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Adapting x*
i to scenario j 

Scenario i problem Scenario j problem 

x*
i 

yi→j 

y1→2: Adapted system capacity 

x*
i 

x*
j 

Figure 2.4: Adaptation problem

referred to as robust.

One of the disadavantages of this approach is its high sensitivity to the choice of scenarios

as mentioned by Higle and Wallace (2002). The reason is that regrets evaluation is done

among candidate solutions or decisions that are already proper of the scenarios under wich

were obtained. Indeed, the same reference argues that this risk mitigation tool is too risky by

itself.

2.6.2 Minimization of adaptation costs

A recent approach designed to deal with consequences of nonrandom uncertainties is based

on the concept of flexibility Zhao et al. (2009) and Zhao et al. (2011). When an expansion plan

is designed using either a probabilistic approach or regret minimization, once the uncertainties

(global) are revealed, the plan may not satisfy the system requirements and needs further

adjustment or re-expansion. The reason is the plan would take several years to be implemented,

and therefore it is likely that the forecasting of the scenario trajectory results will be wrong.

Basically, the plan has to be adapted in a timely and cost-effective way to the new conditions

defined by the just-observed scenario. Based on this argument, Zhao et al. (2009) propose an

indicator that takes into account how much it costs to adapt a plan to the conditions of an

observed scenario.

Mathematically, adaptation cost AC (x, s) is the cost of adapting the planning solution x to

scenario s. It can be computed by re-running the optimization model with data corresponding

to scenario s starting with the current infrastructure x. Fig. 2.4 is a graphical description
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of what adapting a planning solution x1 to scenario 2 means. Adapting a system infrastruc-

ture refers to finding the investment decisions that guarantee the system will meet all of the

requirements under scenario s. In the plot, y1,2 is the new infrastructure, and the difference

y1,2 − x1 determines the re-investments for a succesful adaptation. Then, according to Zhao

et al. (2009), once the decision maker knows all the possible adaptation costs between scenar-

ios, he/she wants to select the most flexible planning solution by choosing the solution that is

cheaper to adapt to the worst-case scenario:

min
x

max
s

AC (x, s)

The works of Zhao et al. (2009), Maghouli et al. (2011), and Zhao et al. (2011) appear to

be the only applications that consider adaptation cost in the power system literature. Related

concepts of flexibility and core solutions are presented in Balijepalli and Khaparde (2010).

2.7 Recent Uncertainty Approaches in Power System Applications

Many power system problems contain significant uncertainties, and researchers have dealt

with them in different ways according to the prior knowledge of the uncertainty.

Stochastic programming

Sanghvi et al. (1982) present a generation expansion planning model that models uncertainty

in load growth, load shape, unit availability, fuel availability, and weather conditions. Meza

et al. (2007) consider fuel price uncertainties in a multi-objective power system expansion

planning approach by minimizing costs and carbon emissions. The work by Gorenstin et al.

(1993) is an application of SP in power system planning considering uncertainties in demand

growth, fuel cost, delay in project completion, and financial constraints. The paper of Yehia

et al. (1995) is an application to the Lebanese system that considers scenarios for demand

increase rate, transmission planning and reactive power. Mo et al. (1991) minimize the expected

investment and operation costs with Markov chains models for uncertainties and stochastic

dynamic programming. Malcolm and Zenios (1994), in addition to expected cost, also consider
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second moment to minimize cost risk considering a discrete probability mass function for the

scenarios. The work in Street et al. (2009) presents the selection of optimal renewable portfolios

using stochastic programming considering spot price uncertainties risk and measured through

conditional value at risk. Lopez et al. (2007) present a two-stage stochastic programming

model for dealing with random uncertainties such as demand, availability of generation, and

transmission lines capacity factor. Roh et al. (2009) show a stochastic long-term generation

and transmission capacity planning where scenarios are created by Monte Carlo simulation for

considering load uncertainties and generation and transmission availability.

Robust optimization

RO has becoming a more popular tool in the power system literature. An application of

RO in planning the transition to plug-in hybrid electric vehicles was presented by Hajimiragha

et al. (2011). In Street et al. (2011), a tractable novel contingency-constrained unit commitment

considering n − k criterion is proposed. Baringo and Conejo (2011) propose a model for con-

structing hourly offering curves of power producers considering price uncertainties. Jiang et al.

(2012) report a study on unit commitment of thermal units under wind output uncertainty.

Chance-constrained optimization

Chance-constrained optimization has also been used in power system research. Yu et al.

(2009) deal with transmission expansion planning via chance constrained optimization consid-

ering load and wind farm uncertainties. Thw work by Mazadi et al. (2009) is a an application of

chance-constrained optimization in a generation expansion problem. And Zhang and Li (2011)

use chance-constrained optimization in optimal power flow problems.

Regret minimization

Other recent applications include regret minimization such as Cámac et al. (2010), a trans-

mission planning tool for addressing robustness, regret, and exposure. The work presented

by Arroyo et al. (2010) is a risk-based transmission planning model that considers deliberate

outages.
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Adaptation cost minimization (flexibility)

Among the novel methodologies, the concept of flexibility has been introduced in Zhao et al.

(2009) through the minimization of adaptation cost in transmission expansion planning. Zhao

et al. (2011) also addresses the aspect of flexible transmission planning given the uncertain-

ties of generation expansion, load, and market variables for assessing the economical benefit

of distributed generation. Also, the work Maghouli et al. (2011) deals with scenario-based

transmission expansion planning in a multi-objective fashion where objectives minimized are:

social cost, maximum regret, and maximum adjustment cost.
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CHAPTER 3. BALANCING ROBUSTNESS AND COST IN POWER

SYSTEM CAPACITY EXPANSION PLANNING

3.1 Chapter overview

A RO based methodology to solve uncertain capacity expansion planning is presented. RO

is a useful tool when looking for solutions that need to be robust and economically realistic

under presence of multiple amounts and sources of uncertainty. Precisely, a capacity expan-

sion planning problem selects the most cost-efficient energy production technologies to satisfy

demand reliably under changing and uncertain conditions in demand, fuel prices, and resource

availability, among others. To evaluate robustness, we perform different MC simulations using

in- and out-of-sample uncertainties. Results of RO applied to the planning of a 13-technology

portfolio power system show that RO-based plans outperform those obtained via deterministic

optimization in terms of robustness at a low cost (price of robustness).

3.2 Introduction

Decision–making problems, mainly approached by optimization techniques, are traditionally

solved assuming perfect knowledge of situations characterized by data. However, many of these

situations are full of uncertatinty, and different instances of data can drive the optimal solution

in different directions.

Research in power systems has recently focused on the ways to control and plan the grid

in uncertain environments with changing conditions. More specifically, power system capacity

expansion planning, understood as the selection of new power capacity from a pool of available

technologies, requires a rigorous treatment of uncertainty since all the decisions have to be

made based on assumptions about future states of nature.
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Types of uncertainty in power system planning include fuel prices, power demand, penetra-

tion of new technologies, implementation of environmentally-related policies, and availability

of renewable resources. Planning robustness is the ability of a given system plan to perform

under different realizations of conditions where performance is characterized by metrics such

as cost, energy price, and reliability.

A literature review for the entire dissertation was provided in 2. To that, we add the

following comments on previous work that is of particular interest to the subject of this chapter.

Several efforts have incorporated uncertainty in power system planning planning. For in-

stance, the work in Meza et al. (2007) models fuel price uncertainties. Strategies that combine

the analysis of the solutions of individual scenarios in order to obtain the solution that best

performs in all scenarios are explained in Linares (2002) and Firmo and Legey (2002). The

work in Cámac et al. (2010), is a transmission planning tool for addressing robustness, regret,

and exposure. The work presented by Arroyo et al. (2010) is a risk-based transmission plan-

ning model that considers deliberate outages. The concept of flexibility has been introduced in

Zhao et al. (2009) and Zhao et al. (2011) through the minimization of adaptation cost in trans-

mission expansion planning. And the work Maghouli et al. (2011) deals with multi-objective

scenario-based transmission expansion planning.

SP has been a popular approach for handling uncertainty. For instance, the work in Lopez

et al. (2007) present a two-stage stochastic programming model for dealing with random un-

certainties such as demand, availability of generation, and transmission lines capacity factor.

Reference Street et al. (2009) presents the selection of optimal renewable portfolios considering

spot price uncertainties. The work Roh et al. (2009) shows a stochastic generation and trans-

mission planning considering load uncertainties and generation and transmission availability.

Apart from stochastic programming, another technique to model uncertainty is RO. RO,

rather than explicitly enumerating each possible outcome of uncertainty or scenario, looks for

solutions that are feasible and implementable under many realizations of uncertainties Ben-Tal

et al. (2009); Bertsimas and Sim (2004); Ben-Tal and Nemirovski (1998). Indeed, in the RO

literature, robustness is achieved when the solution, once implemented, is always feasible under

any realization of data characterized by the uncertainty set. Among the first works in RO are
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Ben-Tal and Nemirovski (1998) andEl Ghaoui and Lebret (1997). References Bertsimas et al.

(2011a); Ben-Tal and Nemirovski (2002) describe some of the applications of RO in finance,

statistics, and enginnering.

RO has become a more popular tool in the power system literature. An application of RO in

planning the transition to plug-in hybrid electric vehicles was presented by Hajimiragha et al.

(2011). In Street et al. (2011), a tractable novel contingency-constrained unit commitment

considering n−k criterion is proposed. In Baringo and Conejo (2011) a model for constructing

hourly offering curves of power producers considering price uncertainties is proposed. The work

Jiang et al. (2012) reports a study on unit commitment of thermal units under wind output

uncertainty.

In this work, RO is used to solve a power system capacity expansion planning model under

multiple uncertainties. RO is a useful tool, given its computational tractability, when look-

ing for solutions that need to be robust and economically realistic under presence of multiple

amounts and sources of uncertainty. We consider uncertainties in demand, fuel (natural gas,

coal, uranium) prices, resource availability (like wind speed, solar radiation), investment costs,

and Operation and Maintenance (O&M) costs. To evaluate robustness level, we perform dif-

ferent MC simulations using in- and out-of-sample uncertainties. Results of RO applied to

the planning of a 14-technology portfolio power system show that RO-based plans outperform

those obtained via deterministic optimization in terms of risk at a low extra cost.

3.3 Robust Optimization

In this section, we show how an optimization problem with uncertain data characterized

by uncertainty sets is transformed to its robust counterpart. In order to explain RO and its

underlying guidelines, we use the main concepts adapted from Ben-Tal et al. (2009).

Consider the following uncertain linear program:
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minimize
x∈<n

c>x

subject to a>i x ≤ bi, i = 1, . . . ,m.

(A, b, c) ∈ U = UA × Ub × Uc

(3.1)

A ∈ <m×n, b ∈ <m, and c ∈ <n are arrays of uncertain parameters that lie in a convex

uncertainty set U defined on <m×n × <m × <n as the cartesian product of the each uncertain

parameter uncertainty set. It is assumed that each a ∈ [ā − â, ā + â], b ∈ [b̄ − b̂, b̄ + b̂], and

c ∈ [c̄ − ĉ, c̄ + ĉ], where â, b̂ and ĉ are the maximum variations of a, b, and c with respect to

their nominal values ā, b̄, and c̄, respectively.

The RO approach deals with finding a solution to the linear program (3.1) such that it

is feasible under any realization of the uncertain parameters. When the parameters are not

only considered uncertain but also random, i.e. they have a probability distribution, the RO

formulation still works. In fact, references Bertsimas and Sim (2004), and Ben-Tal et al. (2009)

use a probability indicator to measure the level of satisfaction of the constraint.

From now on, without loss of generality, we will consider the linear program (3.1) with only

one constraint of the form a>x − b ≤ 0. In general, a RO problem is solved by solving the

following model:

minimize
x

sup c>x
c∈Uc

subject to sup
(a,b)∈Ua×Ub

(
a>x− b

)
≤ 0

(3.2)

This formulation ensures that under any observation of uncertainty within the bounds

defined by U , the solution will be feasible. Furthermore, the minimization of the maximum

value of the objective function, known as the worst-case scenario, is implemented; therefore,

the optimal objective function is indeed an upper bound of the actual objective value given the

uncertainty represented in c.

We are only considering uncertainty in a and b. By using affine perturbations η ∈ Z where

ak = āk + ηkâk, k = 1, . . . , n, and b = b̄+ ηn+1b̂, the linear program (3.2) can be written as:
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minimize
x

c>x

subject to
n∑
k=1

ākxk − b̄+ sup
η∈Z

(
n∑
k=1

ηkâkxk − ηn+1b̂

)
≤ 0

(3.3)

A tractable representation of (3.3) is obtained when the primitive uncertainty set has special

properties such as convexity. Next, we show the mathematical framework when uncertain data

lies in ellipsoidal sets. Thus, the primitive uncertainty set Z can be parameterized as:

Z =
{
η ∈ <n+1, ‖η‖2 ≤ Ω

}
=

{
η ∈ <n+1,

√
η2

1 + η2
2 + . . .+ η2

n+1 ≤ Ω

}
The size of the uncertainty set can be controlled through Ω, which is called the uncertainty

budget. Essentially, this extra parameter helps the decision maker to adjust the degree of

robustness of its solution by increasing or decreasing Ω. The solution to the inner linear

maximization problem in (3.3) is a point such that one of the components of the vector η is at

its maximum value Ω. This optimization problem is over a convex set; therefore its solution is

a global optimum. Furthermore, it has an analytical solution given by

η∗k =
âkxk√∑n

j=1 â
2
jx

2
j + b̂2

Ω, k = 1, . . . , n

η∗n+1 = − b̂√∑n
j=1 â

2
jx

2
j + b̂2

Ω

Therefore, the robust counterpart of (3.3) is

minimize
x

c>x

subject to
n∑
k=1

ākxk + Ω

√√√√ n∑
k=1

â2
kx

2
k + b̂2 ≤ b̄

or equivalently

minimize
x

c>x

subject to ā>x+ Ω
∥∥∥[diag (â)x; b̂

]∥∥∥
2
≤ b̄

(3.4)
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Problem (3.4), known as the RC, is a tractable representation of (3.3) since it is a second-order

cone program.

Uncertainty sets can also be represented in terms of other norms as follows:

minimize
x

c>x

subject to
n∑
k=1

ākxk + sup
‖η‖≤Ω

(
n∑
k=1

ηkâkxk + ηn+1b̂

)
≤ b

(3.5)

It can be shown that the lower level optimization problem can have a compact expression

in terms of the dual norm:

minimize
x

c>x

subject to ā>x+ Ω
∥∥∥[diag(â)x; b̂

]∥∥∥
∗
≤ b̄

(3.6)

Problem (3.6) is still a linear program in the case of l1 and l∞ norms. However, in the rest

of this work, we use the l2 norm as in (3.4). If Ω = 1, the solution is robust for the uncertainty

represented in the problem. If uncertainties are not known exactly, selecting the best Ω for

each constraint depends on the specific application and the decision maker’s objectives.

3.4 Capacity Expansion Planning

A power capacity expansion planning problem consists of determining the most cost-effective

investment decisions regarding the energy portfolio in the power system while meeting future

demand changes and operational constraints. The plan decides what type of technologies and

where to install. In addition, we are focused on the modeling of different types and sources of

uncertainties in the sector.

We recognize the nature of any planning problem is dynamic, and decisions need to be made

throughout the planning horizon. However, we are using a static version since the purpose of

this chapter is to illustrate the importance of addressing uncertainty issues by RO.

In this work, we are considering the capacity expansion planning of the entire US generating

portfolios under uncertainty. The objective is then to obtain the least-cost and most robust
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power system portfolio considering 14 different generation technologies. The planned power

system must perform satisfactorily under any possible outcome of uncertainty.

The capacity expansion planning problem is specified as the minimization of the investment,

fuel, and O&M costs. Mathematically:

minimize
Cap,Capadd,P,θ

TC =
∑

i∈Φ,j∈Ψ

Ĩi,jCap
add
i,j +

∑
i∈Φ,j∈Ψ

(
ÕM

f

jCapi,j + ÕM
v

j

∑
s∈S

Pi,j,shs

)
T

+
∑

i∈Φ,f∈F ,s∈S
F̃Ci,f

 ∑
m∈Ψf

HmPi,m,shs

T (3.7)

subject to∑
j∈Ψ

Pi,j,s −
∑

k∈Φ,l∈L
blSi,lSk,lθk ≥ d̃i,s, ∀i ∈ Φ, s ∈ S (3.8)

bl

∣∣∣∣∣∑
i∈Φ

Si,lθi

∣∣∣∣∣ ≤ Fmax
l , ∀l ∈ L (3.9)

|θi| ≤ π, ∀i ∈ Φ (3.10)

Capi,j = Capexisting
i,j + Capadd

i,j , ∀i ∈ Φ, j ∈ Ψ (3.11)∑
i∈Φ,j∈Ψ

Capi,j ≥ (1 + r)
∑
i∈Φ

d̃i,peak (3.12)

0 ≤ Pi,j,s ≤ C̃Ci,j,mCapi,j , ∀i ∈ Φ, j ∈ Ψ, s ∈ S (3.13)∑
s∈S

Pi,j,shs ≤ C̃F i,jCapi,j
∑
s∈S

hs, ∀i ∈ Φ, j ∈ Ψ (3.14)

Indexes i (and k), j, f , m, l, and s represent elements of the region set Φ, technology

set Ψ, fuel set F , fuel-based technology set Ψf , transmission path set L, and LDC steps set

S respectively. Decision variables are the capacity additions Capadd, power generation P ,

and nodal voltage angles θ. The objective function (total cost TC) (3.7) is the sum of total

investment cost and total operational cost for T years. I represents the per-MW investment

cost. O&M costs are split into fixed, OM f, and variable, OMv. HR represents heat rate, FC

the fuel cost, and h the duration (hours per year) of the LDC steps. Equation (3.8) establishes

that total generation must meet demand d for every step of the LDC. Fig. 3.1 shows a three-

step (|S| = 3) LDC. It represents an arrangement of the load curve in descendent order of
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Figure 3.1: Three-step load duration curve

magnitude during a year. It is assumed that ds is observed during hs hours per year. The area

under the LDC is the energy demand.

We use a DCOPF; so that eq. (3.8) expresses transmission flows as angular differences. The

topology of the system is characterized by the incidence matrix S, and the line susceptances

are represented by b. Power flows are expresed in terms of angle differences. Flow limits

are imposed in (3.9). Angles (in radians) are bounded in (3.10). Equation (3.11) updates

the existing installed capacity Capexisting. Cap represents the portfolio of installed capacity.

Constraint (3.12) imposes a capacity reserve requirement r.

The pattern of energy production varies throughout the day due to fluctuations in availabil-

ity of energy resource. For example, a wind farm only delivers a portion of its rated capacity

during the day since wind speeds are low; but the wind power production potential may be

higher at night since wind speeds are higher. That is why we use the capacity credit CC to

model the availability of energy resource as shown in (3.13).

The energy production constraint is captured in (3.14). The capacity factor CF of a plant

is the average power produced in a specific period as a percentage of the maximum power the

unit can produce.
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3.5 Robustness testing

3.5.1 Production cost model

An optimal solution of (3.6) might not be necessarily robust for data realizations that

come from outside the boundaries of the uncertainty sets. These sets are only mathematical

tools useful for representing data fuzziness; but in general, it is hard to know what the actual

uncertainty looks like. Therefore, it is important to evaluate how the design provided by (3.6)

performs against different sizes and sources of the uncertain data.

For assessing the performance of the system, we perform MC simulations on multiple pro-

duction cost models under the uncertainties that directly affect the system operation. The

model minimizes production cost subject to the demand balance constraint and takes the in-

vestments in capacity Capadd
j and installed capacity as given, as follows:

minimize
P,θ,DNS

∑
i∈Φ,j∈Ψ

ÕM
v

j

∑
s∈S

Pi,j,shs +
∑

i∈Φ,f∈F ,s∈S
F̃Ci,f

 ∑
m∈Ψf

HmPi,m,shs


+

∑
i∈Φ,s∈S

ρsDNSi,shs

subject to∑
j∈Ψ

Pi,j,s −
∑

k∈Φ,l∈L
blSi,lSk,lθk ≥ d̃i,s −DNSi,s, ∀i ∈ Φ, s ∈ S

bl

∣∣∣∣∣∑
i∈Φ

Si,lθi

∣∣∣∣∣ ≤ Fmax
l , ∀l ∈ L

|θi| ≤ π, ∀i ∈ Φ

0 ≤ Pi,j,s ≤ C̃Ci,j,sÃi,jCapi,j , ∀i ∈ Φ, j ∈ Ψ, ∀s ∈ S

DNSi,s ≥ 0, ∀i ∈ Φ, s ∈ S

where Capi,j = Capexisting
i,j + Capadd

i,j . DNS represents the demand not served. It is modeled

to make the production cost problem always feasible under any realization of the uncertain

parameters. It is penalized in the objective function through ρ to make sure it will only be

used when the planned system is not able to satisfy demand.
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For a more comprehensive system robustness assessment, we assume two sources of uncer-

tainty in which the parameters ã are independent and: 1) normally distributed with mean ā

and standard deviation â/3, and 2) uniformly distributed in the interval
[
ā− â/

√
3, ā+ â

√
3
]
,

whose mean is ā and standard deviation is also â/3.

Additionally, we want to see how the system performs when other uncertainties, not modeled

in the RO model, are actually realized. For that purpose, we simulate (aggregated) unit outages

represented by availability factors Ãi,j . Every Ãi,j is assumed to have a discrete distribution

as follows:

P
(
Ãi,j = Ai,j

)
=


FORj if Ai,j = 0.8,

1− FORj if Ai,j = 1.0

where FOR is forced outage rate. So, with this contingency model we can say that the “ag-

gregated” unit will operate with probability FOR; and, will operate at 80% of the credited

capacity with probability 1 − FOR. Notice that when an outage is simulated, it represents a

loss of 20% in capacity of the technology in consideration, which is a high-impact contingency.

3.5.2 Robustness indicators

The following are some measures of system performance that are computed once the MC

simulation is run. Expectations are estimated by sample means.

• EENS: the sample mean of the equivalent energy result of demand not attended:

EENS ≡ E

 ∑
i∈Φ,s∈S

DNSi,shs

 (3.15)

• Expected energy not served percentage (EENSP): the expected ratio between the energy

not served and the energy demand:

EENSP ≡ E

(∑
i∈Φ,s∈S DNSi,shs∑
i∈Φ,s∈S di,shs

)
× 100 (3.16)

• Expected robustness price (ERP): the expected additional cost (in percentage) of the

RO-based plan with respect to the cost of the deterministic plan:

ERP ≡ E
(

TC

TCDet
− 1

)
× 100 (3.17)
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where

TC =
∑

i∈Φ,j∈Ψ

Ĩi,jCap
add
i,j +

∑
i∈Φ,j∈Ψ

(
ÕM

f

jCapi,j + ÕM
v

j

∑
s∈S

Pi,j,shs

)
T

+
∑

i∈Φ,f∈F ,s∈S
F̃Ci,f

 ∑
m∈Ψf

HmPi,m,shs

T

3.6 Results

The approach described in this work was implemented in Matlab. The RO block is per-

formed by a Matlab-based optimization software called CVX Grant and Boyd (2010) useful for

solving convex problems. Also, the robust counterpart is a convex and tractable representation

of an uncertain optimization problem since we are using ellipsoidal uncertainty sets.

A 14-technology (CO: coal, NGCC: natural gas combined cycle, NUC: nuclear, WND:

wind, WAT: hydro, SUN: solar thermal, OWND: offshore wind, ACT: advanced combustion

turbine, IGCCCS: integrated gasification combined cycle with carbon sequestration, BIO:

biomass, NGCCCS: natural gas combined cycle with carbon sequestration, GEO: geothermal,

MSW: municipal solid waste) electricity investment portfolio is optimized considering multiple

uncertainties in data. All data are chosen to approximately represent the features of the

energy portfolio investment problem in a 5-region US system. This option was chosen because

it contains geographical biases in technology attributes that are more familiar to many readers

than those of a test system would be. Regions are aggregations of different states that represent

the West coast (R1), Midwest (R2), South-Central area (R3), Northeastern coast (R4), and

Southeastern coast (R5).

3.6.1 Data

Figure 3.2 shows the investment costs uncertainties considered. Central values, are taken

from the EIA. The lengths of each interval are based on our assumptions. In terms of investment

cost, natural gas based technologies are the most attractive.

Table 3.1 shows a summary of data for region 4. The CC corresponding to wind and solar

power are allowed to vary geographically and according to the LDC step. For example, in both
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Figure 3.2: Investment costs uncertainties

Table 3.1: Summarized data for Northeastern region (R4)

Technology
CCpeak CF OM f OMv

(%) (%) ($/kW-year) ($/MWh)

CO 95 ± 5 72.2 ± 8 29.6 ± 5.9 4.3 ± 0.9

NGCC 95 ± 5 40.6 ± 5 14.6 ± 2.9 3.1 ± 0.6

NUC 95 ± 5 91.1 ± 6 88.8 ± 17.8 2.0 ± 0.4

WND 20 ± 10 20.0 ± 5 28.1 ± 5.6 0.0

WAT 85 ± 10 29.4 ± 5 13.4 ± 2.7 0.0

SUN 20 ± 10 15.0 ± 5 64.0 ± 12.8 0.0

OWND 50 ± 15 35.0 ± 5 53.3 ± 10.7 0.0

ACT 95 ± 5 40.6 ± 4 6.7 ± 1.3 9.9 ± 2.0

IGCCCS 95 ± 5 72.2 ± 8 69.3 ± 13.9 8.0 ± 1.6

BIO 40 ± 20 37.3 ± 10 100.5 ± 20.1 5.0 ± 1.0

NGCCCS 95 ± 5 40.6 ± 4 30.3 ± 6.1 6.5 ± 1.3

GEO 5 ± 5 10.0 ± 10 84.3 ± 16.9 9.6 ± 1.9

MSW 40 ± 20 37.3 ± 10 373.8 ± 74.8 8.3 ± 1.7
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Table 3.2: Existing capacity (GW)

Technology R1 R2 R3 R4 R5

CO 35.88 28.72 32.21 125.38 115.11

NGCC 88.64 17.91 97.78 106.65 143.34

NUC 9.99 5.41 6.37 44.92 39.46

WND 7.52 5.61 8.95 2.71 0.19

WAT 54.01 3.39 1.75 15.31 23.62

SUN 0.53 0.00 0.00 0.01 0.00

OWND 0.00 0.00 0.00 0.00 0.00

ACT 0.00 0.00 0.00 0.00 0.00

IGCCCS 0.00 0.00 0.00 0.00 0.00

BIO 0.02 0.00 0.02 0.04 0.02

NGCCCS 0.00 0.00 0.00 0.00 0.00

GEO 3.28 0.00 0.00 0.00 0.00

MSW 0.18 0.13 0.02 1.59 0.76

the East and West Coasts (R1,R4, and R5) during peak load periods, CC of wind is allowed to

vary between 10% and 30%, but it lies between 25% and 55% in the central regions (R2 and

R3). In base load periods (nights and early mornings), it ranges between between 45% and

75% in the central regions, and between 20% and 40% in other areas. Like wind power, solar

also changes by region and LDC step. Solar radiation is more intensive in the Southwestern

states (part of R1 and R3), where its CC ranges from 30% to 50% during peak load periods.

We assume it is even more intensive at medium load periods, and less intensive at base load

periods. For the rest of the regions, solar power CC is as shown in Table 3.1. The model

can invest in off-shore wind power everywhere except in the Midwest (R2). The West coast

(R1) is the only candidate region for geothermal capacity investments. Table 3.1 also shows

capacity factor (CF ). CF of wind (WND), solar thermal (SUN), offshore wind (OWND), and

geothermal (GEO) units vary among regions based on the same rationale explained for CC.

From the CF standpoint, nuclear performs the best among all the 14 technologies considered.

O&M costs are also shown in Table 3.1. natural gas combined cycle (NGCC) units are always

among the most attractive technologies given their low O&M costs (OM f and OMv). Table 3.2

shows the existing installed capacity (actual data from 2008). Data was obtained from EIA.

Fig. 3.3 illustrates uncertainties in fuel cost that are used. We assume that natural gas is

significantly more volatile than uranium and coal in most regions.
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Figure 3.3: Fuel cost uncertainties for each region R1–R5
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Figure 3.4: Demand steps uncertainties
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Figure 3.5: Composition of the deterministic portfolio with respect to natural gas price

Demand uncertainties are plotted in Fig. 3.4. The peak demand value is approximated by

the actual 2009 value projected forty years (T ) at an annual growth rate of 1%. The duration

of each step of the LDC is 365, 4895, and 3500 hours per year for steps 1, 2 and 3 respectively.

Medium and base demand are set such that total energy consumption corresponds to the energy

demand observed in 2009.

3.6.2 Motivating the search for robustness

In this subsection, we want to motivate the use of tools able to achieve more robust so-

lutions to uncertainties. To do so, a benchmark solution is obtained first using deterministic

optimization; then we show that this solution is very sensitive to small changes in some data.

The investments of the deterministic “Det” portfolio are composed mainly of NGCC in the

West and East coasts, some nuclear in the East, and wind power in the Central area. However,

this optimal solution is very sensitive to some uncertainties, particularly natural gas price. The

regional average price used for our studies is $4/MMBTU. Fig. 3.5 shows a sensitivity analysis

of the total system capacity added with respect to gas price variation. Even fluctuations of

$1/MMBTU (from $3.50/MMBTU to $4.50/MMBTU) cause significant changes in the new

additions of capacity. High prices favor investments in nuclear and wind power plants. Other

uncertainties to which the optimal solution are sensitive are uranium price, wind investment
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Figure 3.6: Capacity investments according to uncertainty space

cost, and NGCC capacity factor. Also, if uranium price is reduced $0.1/MMBTU from the

nominal value ($0.9/MMBTU), nuclear investments increase dramatically whereas NGCC in-

vestments become zero. Furthermore, increases of only 2% in wind investment cost result in

investments of coal rather than wind power. In addition, if NGCC capacity factor were reduced

from 40% to 37%, the optimal solution replaces NGCC by investments in nuclear power.

3.6.3 Robust plans

Fig. 3.6 shows total capacity additions and total cost (TC) when uncertainties are incorpo-

rated in the robust model. Each bar represents the optimal capacity additions corresponding

to different uncertainty environments. Each label describes the uncertainty space in consider-

ation. For example, labels “Det”, “IC”, “FC”, “OM”, “D”, “CC”, “CF”, and “All” stand for

deterministic, investment cost, fuel cost, O&M cost, demand, capacity credit, capacity factor,

and all of the previously described uncertainties respectively. Also, a “+” or “-” sign indi-

cates that the robust optimization is performed “with” or “without,” the uncertain parameters

characterized by the acronym that follows the sign respectively.
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As mentioned earlier, the “Det” case invests in NGCC, wind, nuclear, and some coal-fired

capacity. These technologies are favored by their quite low investment cost (compared to other

technologies). Also, wind power benefits from low O&M costs and zero fuel costs. Investments

in Fig. 3.6 are sorted in increasing order according to NGCC investments. For instance,

when “FC” uncertainties are considered, investments in NGCC units are minimum to avoid

too much economic risk exposure. On the contrary, when “All” but the “FC” uncertainties

are considered, NGCC investments are the highest. Although NGCC investment cost is higher

than ACT’s, NGCC is preferred because of both its lower fuel consumption (heat rate) and

lower variable O&M cost.

Nuclear power is another important player in the portfolio. Almost all of the uncertainty

cases are favorable for nuclear, except when “CC”, “IC”, and “OM” are considered. When “FC”

uncertainties are modeled, nuclear prevails over NGCC because gas price is more volatile. The

“Det” portfolio selects less nuclear capacity than NGCC capacity.

Wind power has low capacity credit and capacity factor; it is attractive for the model only

when both demand uncertainties and those affecting the total cost are considered. Coal and

wind capacity investments compete with each other. This indicates coal is attractive where

wind is not, i.e., when uncertainties related to the system operation are modeled. Wind power

might be more attractive if environmental constraints or policies are modeled.

Total cost of the “Det” case is $7.7 trillion whereas the “All” case is $10.5 trillion; the most

robust plan would be 36.2% more costly than the “Det” plan. Each uncertainty space and its

corresponding degree of robustness has a price the planner must be willing to pay. However, the

tradeoffs between cost and robustness may be obtained by tuning the sizes of the uncertainty

sets.

Once the robustness test is performed, the robustness indicators are computed. Fig. 3.7

shows a tradeoff between robustness price (RP), measured as the extra cost of each RO plan

with respect to the cost of the deterministic plan, and EENS. In this case, the random data

is assumed to be uniformly distributed. This plot suggests there might be a plan with an

acceptable level of robustness (low EENS) at a reasonable RP. Our assumed expected energy

demand is 5,823 TWh, and to guarantee that the ratio between Energy not served (ENS) and
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Figure 3.7: EENS and price of robustness for different uncertainty spaces
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Figure 3.8: Evolution of portfolios under changes in the sizes of the uncertainty set
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Table 3.3: Acceptable uncertainty budgets of RO constraints

Unc. budget C1 C2 C3 C4 C5

ΩInv 0.0 0.0 1.1 0.0 1.0

ΩO&M 0.0 0.0 0.0 0.0 1.0

ΩFC 0.7 0.75 1.1 0.7 1.0

Ωd 0.0 0.0 0.0 0.0 1.0

ΩCC 0.0 0.75 0.0 0.0 1.0

ΩCF 0.7 0.0 0.0 0.0 1.0

energy demand is equivalent to one day in ten years, then 1,594 GWh is an admissible value

of EENS per year. Promising plans are those that have the potential to satisfy the EENS

requirement at even lower RP.

Another way to depict uncertainty influence on the solution is changing the uncertainty

budget Ω. Fig. 3.8 illustrates the evolution of the robust portfolio as the uncertainty sets get

bigger. Ω determines the amount of uncertainty included in uncertainty set. Ω = 0 and Ω = 1

correspond to the “Det” and “All” cases respectively. Unlike wind power, coal, and nuclear

investments are favored by the uncertainty sets of larger size. The reason is that uncertainties in

renewables production —modeled through CC and CF— affect negatively wind investments

and incentivize nonrenewables penetration. Although NGCC investments are observed, gas

price volatility does not allow NGCC capacity to increase significantly.

3.6.4 Candidate plans

To extend some of the results presented in part 3.6.3, we choose five portfolios from Fig.

3.6 that have the potential of lowering RP while keeping high robustness levels by refining

their uncertainty set sizes. They are shown in Table 3.3 and are represented from C1–C5.

Candidates, are obtained from the promising plans observed in Fig. 3.7 and correspond to

cases “FC+CF”, “CC+FC”, “IC+FC”, “FC”, and “ALL” respectively. However, C5 is chosen

only to show what would be the RP of achieving the highest robustness levels. These cases,

were those that could reduce their price of robustness and guarantee that EENSP is below

to 0.03%. The values of the uncertainty budgets (Ω′s) were decreased (increased) manually

in steps of 0.05 if the EENSP observed after performing a MC simulation was below (above)
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(a) Capacity investments of candidate plans by region
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Figure 3.9: Candidate planning solutions
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0.03%. This process was repeated until a good combination of the Ωs of each constraint was

found. A development of a systematic way to intensify a local search of the best Ω values would

be an interesting research direction.

The investments and installed capacity of those refined plans, broken down by region,

together with the “Det” plan, are plotted in Figs. 3.9a and 3.9b respectively. Investments in

NGCC are observed in the “Det” and C5 solutions, which show NGCC investment mostly in

the Western Electricity Coordinating Council (WECC) (R1) area where it is cheaper. Given

the presence of fuel cost uncertainties, C1–C4 do not choose NGCC but nuclear given the lower

volatility of uranium price. Coal power investments are observed only in the central part of the

country where coal is cheaper and when significant “CF” uncertainty is considered. If it is not

considered, relatively high wind power is selected. C5 selects a mixed portfolio in regions 1, 4,

and 5 (see Fig. 3.9a). The reason is that the model considers different loading conditions using

the LDC, and for each condition there is an attractive technology. Thus, the model combines

these technologies to choose the optimal mixed portfolio that reduces the economic risk caused

by natural gas price.

Overall, nuclear and wind power are the technologies able to provide robustness to the

system at a low cost. After tuning C1–C4, the RP of each candidate are 10.3%, 5.6%, 8%, and

5.1% respectively. The amount of power the “Det” plan selects differs from the candidates,

which causes capacity reserve to be different among the plans. This lack of “smart” capacity

reserve is the cause of the poor performance as we show next.

In order to evaluate how robust the designs are with respect to different amounts of un-

certainty, we performed different MC simulations (with 100 iterations) using normally and

uniformly distributed data with the nominal standard deviation1 (in-sample uncertainty: N1

and U1), and doubling the standard deviation (out-of-sample uncertainty: N2 and U2). Also,

recall that availability factors A, another source of out-of-sample uncertainty, are common to

all of these cases. Since all data change in every iteration, we establish that a good performance

level is achieved when EENSP is 0.027% (ratio between one-day energy demand and ten-year

energy demand). Results are summarized in Table 3.4.

1the nominal standard deviation of each data parameter σa = â/3
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Table 3.4: MC simulation results

Indicator Plan
Uncertainty (source and size)
N1 U1 N2 U2

EENS(GWh)

Det 8386 6620 13495 11958
C1 831 368 3797 2331
C2 289 291 3871 2293
C3 487 389 4528 2826
C4 365 348 4203 2564
C5 0 0 275 44

EENSP(%)

Det 0.142 0.112 0.224 0.200
C1 0.014 0.006 0.062 0.038
C2 0.005 0.005 0.064 0.038
C3 0.008 0.007 0.074 0.047
C4 0.006 0.006 0.069 0.043
C5 0.000 0.000 0.004 0.001

ERP(%)

C1 5.96 6.07 6.62 7.35
C2 2.95 2.96 4.08 4.53
C3 2.44 2.47 3.50 3.90
C4 2.70 2.72 3.80 4.22
C5 13.47 13.60 14.86 15.84

Candidate plans show significant reductions in robustness price compared to the initial

plans. Overall, C5 always displays the best robustness indicators, and also the highest ro-

bustness price. However, C1–C5, balance robustness and cost efficiently for the in-sample

uncertainty cases. Observe the poor performance of the “Det” plan even in the in-sample

uncertainty cases. In the most optimistic case (U1), its EENSP is equivalent to more than

four days in ten years. In the N2 case, performance of all candidates, except C5, do not fulfill

robustness requirements. Resulting events in this case are quite extreme and some might rep-

resent unlikely situations; however, if the planning objectives are very conservative, C5 is the

best solution.

Based on these simulations, building and operating a quite robust plan is only as much as

2.44% (ERP of C3 in case N1) of the deterministic plan, and building and operating a more

robust plan under the most extreme conditions (U2) is 15.84% (ERP of C5). It is important

to clarify that the ERP value does not consider the cost of societal consequences produced by

demand curtailment (cost of ENS). If it was considered, the TC of the “Det” plan would be

much higher and the resulting ERP even less (negative).
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3.7 Conclusions

RO, a state-of-the-art methodology, for balancing robustness and cost in capacity expansion

problem was presented. The role of RO was the design of candidate plans under different

uncertainty environments to tradeoff robustness and price of robustness. And to effectively test

for robustness, MC simulation of a DCOPF was used to represent the actual system operation.

These tools provided signals about how to tune the amount of uncertainty to consider in the

design of each robust plan. Based on the robustness tests results, it was found that the robust

plans, once properly tuned, show acceptable robustness levels at low cost even for different

assumptions in the uncertainty source. The traditional deterministic plan, which is remarkably

sensitive to uncertainties like gas price and wind investment cost, behaved poorly under any

robustness test.
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CHAPTER 4. ADJUSTABLE DECISIONS FOR REDUCING THE

PRICE OF ROBUSTNESS IN POWER SYSTEM CAPACITY

EXPANSION PLANNING —FORMULATION

4.1 Chapter overview

This chapter proposes and implements robust optimization methodologies for making in-

vestment decisions of CEP in an environment with uncertainties in fuel prices, demand, and

transmission capacity. RO and ARO techniques are used to design the robust energy portfolio.

In ARO, a methodology that uses the recourse philosophy of SP in multi-stage problems plus

the safe representation of uncertain constraints through RO, represents decision variables as

functions of past uncertain data. Unlike SP, ARO uses uncertainty sets and avoids the explicit

representation of scenario trees which makes the simulation of multiple uncertainties computa-

tionally tractable. This chapter shows both the deterministic and ARO models for the power

system CEP problem; whereas Chapter 5 is dedicated to present the safe representation of the

CEP under uncertainties and results. A Perfect foresight (PF), and several RO and ARO based

designs are compared in the 40-year planning of a 5-region, 13-technology US energy portfolio.

Unlike the PF design, RO and ARO designs display high levels of robustness at a low price.

4.2 Introduction

Uncertainties are present in any decision-making problem, and especially in those related

to decisions that will be implemented several years in advance. In particular, in this chapter

we are dealing with the modeling of uncertainties for the power system planning problem of

making investment decisions regarding power capacity to satisfy future energy needs.

When this type of problem is solved without uncertainty considerations, results might be
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optimistic —cost efficient— but the quality of the investment decisions is minimal. Mathemat-

ical programming (optimization theory) was developed for problems where all the information

is perfectly known; however, even simple real-life problems do not fulfill such an assumption.

Intuitively, there seems to be a trade-off between optimism and quality/performance of the

solution.

Planning a power system is in fact a serious problem that deserves complete attention

regarding performance, which indicates a rigorous treatment of several instances of uncertainty

in order to achieve, not only a cost-efficient power system, but a resilient and sustainable one. A

poor performance of a power system may result in catastrophic consequences; the most severe,

in terms of social and economic aspects is the curtailment of power demand of large load centers.

A proper model of uncertainty is needed to help reduce the effects on the solution caused by

variability of parameters, policy designs, environmental requirements, and both economic and

social factors.

A long-term power system planning problem faces large amounts of uncertainty in terms

of technological developments, required level of renewable energy penetration in the energy

mix, carbon emission policies, cap and trade markets, fuel prices, demand behavior, electricity

market evolution, renewable resource variability, and future fossil fuel reserves. The impact of

each of these on the system is different with potential to dramatically change the direction of

the evolution of the system.

4.2.1 Literature Review

A literature review for the entire dissertation was provided in 2. To that, we add the

following comments on previous work that is of particular interest to the subject of this chapter.

All types of constraints and uncertainties are present in the long-term power system planning

problem, and several approaches can be found in the literature to deal with some of them.

Traditionally, sensitivity analysis, a post-optimization tool, has been an essential approach

for identifying the influence on planning solutions caused by marginal changes in input data

Ben-Tal and Nemirovski (1998). However, this approach does not actually protect the solution

against those unforeseen uncertainties in data; but, what it does do is to provide a preliminary
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understanding of the effects, if any, on the planning strategy once some data change. This

analysis is not enough by itself when good system performance and robustness are crucial.

For over 50 years, researchers have been thinking about solving optimization problems under

presence of uncertainty; as a result, different philosophies, such as minimization of expectations,

minimization of regrets, minimax of costs, and chance constrained optimization have been

studied (Sahinidis (2004)). SP has been widely used as a powerful tool that does include an

uncertainty model into the mathematical formulation of the problem. Basically, by making use

of probability distributions of uncertain data, an stochastic program considers the minimization

of the expected costs as mentioned in Birge and Louveaux (2009) and Shapiro et al. (2009); and

in some applications, it also considers the minimization of risk measures (Malcolm and Zenios

(1994)). For multi-stage problems, it requires the structure of a scenario tree by approximating

each random variable with a fixed number of samples. Besides uncertainty approximation, the

most critical drawback of realistic SP applications is the exponential growth of the scenario

tree with the number of time steps, making the problem computationally intractable in general

(Ben-Tal and Nemirovski (1998); Ben-Tal et al. (2009)).

Besides SP, RO has emerged as a promising research area in operations research literature

like Ben-Tal and Nemirovski (1998); Ben-Tal et al. (2009); Ben-Tal and Nemirovski (1999, 2000,

2002); Bertsimas and Sim (2004, 2003); Sim (2004). Ben-Tal et al. (2009) and Ben-Tal and

Nemirovski (2002) explain the RO potential applications in many disciplines. Unlike SP, RO

avoids the representation of scenario trees and the sampling process to choose representative

parameters; instead of that, it assumes that the uncertainty space of data is constrained to an

uncertainty set and finds the best solution that is feasible for all the realizations of uncertainties

that lie in the uncertainty space under consideration. Increasing robustness will definitely

worsen the objective function, this is what Bertsimas and Sim (2004) define as the “price of

robustness”. This price is higher as long as the solution becomes more conservative (robust);

however, the level of conservatism can be controlled according to the risk preferences of the

decision-maker.

Several works have used RO for modeling uncertainty. Bertsimas and Sim (2003) show the

mathematical formulation for combinatorial optimization and network flow problems. Alem
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and Morabito (2012) show an application of RO in production planning considering demand

and cost uncertainties. Verderame and Floudas (2011) present an operational planning of a

multisite production and distribution network considering demand and transportation time

uncertainty by RO and minimization of conditional value-at-risk.

4.2.2 Adjustable RO

Since a RO solution has a significant level of conservatism, in multistage optimization it

could be even more since decisions are made at the initial stage to guarantee present and

future feasibility. It would be useful to allow waiting some time for analyzing some revealed

information and then make the decision. This avoids extra-conservatism and improves flexibility

in the investment decisions. To develop this idea, like two-stage SP, ARO splits the actual

decisions (or design variables) into here-and-now and wait-and-see decision variables. The

former are those decisions that will be implemented during the first stage without having

observed any uncertainty realization; whereas the latter are those implemented at later stages

once past uncertainties have been revealed Ben-Tal et al. (2004, 2009); Caramanis (2006).

Decisions are implemented as time passes, and so, there is no real need to make all the decisions

so far in advance. So, why not wait and observe the world and then make the decision?

The way decisions are made in ARO is by constructing decision rules that are functions

of past or revealed information. This process allows decisions to adjust according to previous

realization of uncertainties, which is similar to the idea of recourse in SP Chen et al. (2008) plus

the nonanticipativity conditions. Decision rules are set only for the wait-and-see variables such

that they can take corrective actions to improve the bad situations that could have happened

during previous stages.

A common approximation for setting the ARO is using affine decision rules, i.e., future

decisions are parameterized as affine functions of observed data. Thus, the resulting optimiza-

tion problem, which is still linear under some assumptions, results in the AARC Ben-Tal et al.

(2004, 2009). These type of decision rules are also referred to as linear decision rules (Chen

et al. (2008)).

Among the advantages of solutions obtained using the AARC is their adaptability, reduction
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of the objective function (when compared to a RO), computational tractability, and robustness.

Adaptability refers to solutions that can self-adjust according to the optimal decision rule. Any

realization of data during some stage(s) are inputs in the computation of future decisions. For

example, if gas price is considered an uncertainty in a capacity expansion problem, natural gas

power capacity investments might be reduced if gas price exceeds its expectations. A natural

gas investment decision rule might tell us the same rationale by using the AARC and making

natural gas price part of the uncertainty affine rule. Apart from adaptability, reduction of

the objective function is also possible. As long as decision variables are allowed to have more

degrees of freedom, the feasibility space increases and therefore the solution is more optimal;

also, adaptability avoids making future immediate expensive decisions caused by unexpected

disturbances in data. Although the approach considers recourse, the resulting optimization

is still tractable for finite horizon problems. Finally, robustness is another strength of this

approach. Although solutions are not known so far in advance because we have to wait until

uncertainties are observed, the feasibility of the solutions is guaranteed since the modeling

technique is RO.

To our knowledge, the work Ben-Tal et al. (2004) was the first to introduce the idea of

adjustable solutions in optimization and no ARO-related works have been reported in the liter-

ature of power systems. However, several theoretical improvements and practical applications

have been reported. Reference Caramanis (2006) presents a comprehensive development of

what authors call adaptable RO and illustrates an application of the approach on air traffic

control under weather uncertainty. Ben-Tal et al. (2005) use an AARC to study a multistage

supply chain problem under uncertainty in demand by minimization of the worst-case cost

function. Adida and Perakis (2010) present some models that incorporate uncertainty in a dy-

namic pricing and inventory control problem; and their AARC approach outperforms dynamic

programming, static RO, and stochastic programming.

This chapter proposes and implements an ARO methodology for making investment deci-

sions of power system capacity in an uncertain environment using affine decision rules depending

on information sets. Given that RO uses uncertainty sets, optimizating under multiple uncer-

tainties is computationally tractable. Additionally, a DDP approach is presented in Chapter 5
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to alternatively solve the resulting multi-stage large-scale ARO problems.

4.3 CEP

The CEP problem consists of, in general, identifying the most cost-efficient energy portfolio

that will supply the energy needs of the system in a sustainable and resilient way. “Identifying”

refers to finding the right amounts on investments in time and location such that future energy

needs are satisfied by considering technical, societal and environmental issues, and uncertainty.

The analytical version of the CEP problem used in this work is stated as deciding how

much power capacity to invest in from a set of fossil fuel and renewable generation technolo-

gies. Finding the best portfolio not only requires minimizing costs, and satisfying demand and

operational limits, but also handling the variability caused by renewable generation and the

risks associated with uncertainty in costs and future demand. The model we are dealing with is

a multi-stage long-term investment problem that receives technical and economic signals from

the annual operating problem using a LDC and modeled as a DCOPF.

4.3.1 Deterministic planning

In this section, we show the mathematical formulation of the problem. For clarifying no-

tation, the following sets are used: stage T = {1, . . . , T}, region Φ, technology Ψ, fuel F ,

fuel-based technology ΨF ⊂ Ψ, nonfuel-based technology ΨNF ⊂ Ψ (and ΨNF ∩ΨF = ∅), trans-

mission line L, and LDC step S. Unless somethng else is specified within the formulation,

elements of each set are (by default) represented with the indexes t (or τ), i (or k), j, f , m, u,

l, and s respectively. By definition, we use ΨF =
⋃
f∈F Ψf , where Ψf is the set of technologies

using fuel f . The CEP problem can be stated as:

minimize
Cap,Capadd,P,θ

∑
t,i,j

ζt−1
(
Ii,j,tCap

add
i,j,t − 1{t=T}SVi,jCapi,j,t

)

+
∑
t,i,j

ζt−1

(
OM f

j,tCapi,j,t +OMv
j,t

∑
s

Pi,j,s,ths

)
+
∑
t,i,f,s

ζt−1FCi,f,t

 ∑
m∈Ψf

HmPi,m,s,ths


(4.1)
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subject to

Capi,j,t = Capi,j,t−1 + Capadd
i,j,t − Capret

i,j,t, ∀i, j, t (4.2)

Capi,j,0 = Capexisting
i,j ,∀i, j (4.3)∑

i,j

Capi,j,t ≥
∑
i∈Φ

(1 + r) di,peak,t, ∀t (4.4)

Pi,j,s,t ≤ CCi,j,sCapi,j,t, ∀i, j, s, t (4.5)∑
s∈S

Pi,j,s,ths ≤ CFi,jCapi,j,t
∑
s∈S

hs, ∀i, j, t (4.6)

∑
j

Pi,j,s,t −
∑
k

b′i,kθkS
base ≥ di,s,t∀i, s, t (4.7)

Sbasebl

∣∣∣∣∣∑
i

Si,lθi

∣∣∣∣∣ ≤ Fmax
l,t , ∀l, s, t (4.8)

|θi| ≤ π, ∀i, s, t (4.9)

ζ is the discount factor and T is the planning horizon. The objective function (4.1) is

composed of the total investment cost caused by the additions of new generating capacity

Capadd, the total operating cost which is the sum of the fixed (rent, water use, facility services)

and variable operating (depends on actual energy production) cost. Also, the salvage value is

maximized to guarantee the installed capacity has a value in the end of the planning horizon. I

the overnight or investment costs of each technology, OM f is the fixed O&M cost, OMv is the

variable O&M cost, FC is the fuel cost for coal, natural gas, and uranium; and H is the heat

rate. SV is the salvage value of each unit in the end of the planning horizon and is assumed

as a percentage of the investment cost.

Capt, the installed capacity available throughout period t, as shown in (4.2), is continuously

updated balancing the capacity investments or additions Capadd and the deterministic retire-

ments of capacity Capret
i,j,t starting period t, and the period t−1 cumulated capacity Capi,j,t−1.

At t = 0, capacity is the existing infrastructure at that moment as shown in (4.3).

Total capacity of the system must satisfy reserve margin r with respect to peak demand

di,peak,t as described in (4.4). Power produced by each individual technology, especially renew-
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ables, in different periods of a typical day is bounded by the capacity credit CC as in (4.5).

With CC, we consider renewable resource (wind speed, solar radiation) availability in different

periods defined by the LDC steps for a typical day. For wind and solar units, this availability

is much smaller than for the rest of the units.

Energy production is bounded by the capacity factor in (4.6). CF is the ratio between the

average power produced in a specific period and its nominal capacity. Given the variability of

renewable resources, both wind and solar CF are the lowest. h represent the duration of each

LDC step in hours. For convenience, let the duration fraction of step s be h′s = hs/
∑

s′∈S hs′ .

Total power generation plus (minus) imports (exports) of power, expressed as angular dif-

ferences, coming at (leaving from) every region must be enough to satisfy demand at every

step of the LDC as described in (4.7). The term b′i,k ≡ (
∑

l blSi,lSk,l) relates the connectivity

of nodes with voltage angles.

The power flowing by each path in the network is bounded by the thermal limits on the

transmission lines. If flows are approximated and expressed in terms of angular differences,

maximum (and minimum) flow constraints are as shown in (4.8). Voltage angles (in radians)

are bounded according to constraints (4.9). S represents the network connectivity matrix, b

line susceptances in per unit, and Sbase the base power of the system.

Since RO-based methodologies do not allow to work with equalities (constraint (4.2)),

Capi,j,t can be expressed only in terms of capacity additions:

Capi,j,t = Capexisting
i,j +

t∑
τ=1

(
Capadd

i,j,τ − Capret
i,j,τ

)
, ∀i, j, t (4.10)

Then, by using this expression, the deterministic model can be fully expressed in terms of

capacity investments:

minimize
Capadd,P,θ

∑
t,i,j

cadd
i,j,tCap

add
i,j,t +

∑
t,i,s,u

ζt−1OMv
u,tPi,s,u,ths

+
∑
t,i,s,f

ζt−1
∑
m∈Ψf

(
OMv

m,t + FCi,f,tHm

)
Pi,s,m,ths (4.11)

subject to
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∑
i,j

t∑
τ=1

Capadd
i,j,τ ≥

∑
i,j

{
Capexisting

i,j −
t∑

τ=1

Capret
i,j,τ

}
+ (1 + r)

∑
i

di,peak,t, ∀t (4.12)

Pi,s,j,t − CCi,j,s
t∑

τ=1

Capadd
i,j,τ ≤ CCi,j,s

(
Capexisting

i,j −
t∑

τ=1

Capret
i,j,τ

)
, ∀i, j, s, t (4.13)

∑
s∈M

h′sPi,s,j,t − CFi,j
t∑

τ=1

Capaddi,j,τ ≤ CFi,j

(
Capexisting

i,j −
t∑

τ=1

Capret
i,j,τ

)
, ∀i, j, t (4.14)

∑
j

Pi,s,j,t −
∑
k

b′i,kθkS
base ≥ di,s,t, ∀i, s, t (4.15)

Sbasebl

∣∣∣∣∣∑
i

Si,lθi

∣∣∣∣∣ ≤ Fmax
l,t , ∀l, s, t (4.16)

|θi| ≤ π, ∀i, s, t (4.17)

where

cadd
i,j,t =ζt−1Ii,j,t − ζT−1SVi,j +

∑
τ≥t

ζτ−1OM f
j,τ , ∀i, j, t

4.4 Adjustable Robust Optimization

A pure robust optimization is useful for static problems where performance is crucial and

feasibility must be achieved under any realization of uncertainty. However, when considering

multi-stage optimization two drawbacks of this approach are its relatively high cost of achieving

robustness and inflexibility.

Protecting the solution against the occurrence of any modeled uncertainty is costly. As

a result, the robust solution becomes conservative and the decision maker ends up paying

more than necessary for not knowing the future. In multi-stage optimization problems, this

situation is even worse since the uncertainty space is larger for future stages and the robust

solution must be conservative to be able to handle the unknown future. This type of decision

may be not attractive once the uncertainty trajectory from the initial stage to any other future

stage has been observed. Rather, the decision maker could have preferred to implement a

different strategy (some type of regret).

In addition to the high cost (or price of robustness as defined in Bertsimas and Sim (2004)),

inflexibility is an important disadvantage of a (static) robust multi-stage optimization model.

Static RO makes all of the decisions “here and now” before “seeing” what actually happened
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with all the uncertain parameters, which results in rigid solutions throughout the planning

horizon. The inability of adjusting solutions over time lead the system under study to sub-

optimal states where its performance, that could be still acceptable, might be poor given the

blindness of the decision-making process. To overcome these issues, other uncertainty-related

methodologies like stochastic programming, consider the idea of making “here and now” de-

cisions only for those that will be implemented in the first stage, and the second and further

stage decisions can “wait” until part of the uncertainty trajectory (branch of the scenario tree

in SP) has actually been “seen.”

In order to reduce the level of conservatism and increase the flexibility of the robust solution

in our capacity expansion planning problem, we are using the so called ARO approach of Ben-

Tal et al. (2004, 2005, 2009), also named adaptable robust optimization in Caramanis (2006).

The main idea of this approach is to allow all the decision variables to arbitrarily depend on the

realization of past uncertainties in a systematic way as will be shown in the next subsection.

4.4.1 Preliminaries

Like in most of multi-stage optimization problems, in the CEP problem there are two

embedded subproblems: investment and operation. The optimization model presented is a

joint representation of the two problems and each of them has its own decision variables. For

planning, decision makers are more interested in those variables that really tell them when,

where and what to invest in. However, to make realistic investment decisions, the investment

problem must be guided by the operational problem.

Then, two types of variables can be distinguished: the actual decisions (or design) xdt and

analysis variables xat . The former are those variables that inform the decision maker about what

to do; whereas the latter are optimization decision variables that do not provide decisions, but

are necessary to describe the operational problem of some stage.

In ARO, the idea is to find a direct relationship between uncertainty and decisions by

allowing a specific dependence between the two. In this work, as well as in other applications

observed in references Ben-Tal et al. (2005, 2009); and Caramanis (2006), we chose to work

with an affine relationship. That is, every optimization decision variable is allowed to affinely
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depend on a vector full of uncertain data to obtain the so-called decision rules or linear decision

rules Chen et al. (2008).

To develop this idea, we introduce the concept of information sets. Let {It}Tt=0 be a sequence

of information sets. Each It of them collects all the information observed on the interval [0, t].

By definition, ∅ = I0 ⊂ I1 ⊂ . . . ⊂ IT , i.e., as time passes more information is collected.

Let f (·) : I 7→ Rn be an affine function that maps a point from the uncertainty subspace

defined by the information set I into decision rules. Then, we set the actual decision vectors as

affine decision rules of the form

xdt = ft (It) = γt +
∑
u∈It

γt,uµ̃u, ∀t ∈ T (4.18)

where γ and µ̃ are the vector of coefficients of the linear decision rule and the vector of uncer-

tainties (whose dimension is defined by the cardinality of It) respectively.

Let g (·) : I 7→ Rm be another affine function that maps a point from the uncertainty

subspace defined by the information set I into decision rules. Then, we set the time-t analysis

vectors as affine/linear decision rules of the form

xat = gt (IT ) = φt +
∑
v∈IT

φt,vν̃v, ∀t ∈ T (4.19)

where φ is the vector of coefficients of the linear decision rule of the analysis variables.

Actual decisions xdt are allowed to affinely depend only on the information that is available

up to time t. So, in order to “discover” the actual value of the decision, we need to wait until

all the elements of the information set It are available. Those decisions xdt , t > 0 are called

“wait and see”, and those that are to be made at the initial stage xd0, when no information is

available at all, are the “here and now” decisions. On the other hand, analysis variables xat ,

which are not real decisions, can freely depend upon the whole information set IT . These are

variables that define the operation of the system and do not constitute any prediction of what

the actual values are going to be. In fact, if they are a function of all the information set, will

have more degrees of freedom and therefore are closer to the optimal solution.

Working with affine decision rules is an approximation of the general ARO approach, which
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is not computationally tractable in general. When optimizing only over the coefficients φd and

φa of the uncertain parameters ũ and ν̃ respectively the computation effort is less. However,

the solutions in some problems have been reported (in reference Ben-Tal et al. (2009)) to be

close to the general ARC solution.

4.4.2 Adjustable CEP model

In our power system CEP model, we distinguish the two types of variables involved in the

affinely ARO formulation: 1) the actual decision/design variables correspond to investments in

power capacity (xd = Capadd); and 2) the analysis variables correspond to power generation

and nodal voltage angles (xa = {P, θ}). Power generation and voltage angles fully characterize

the operation of the power system each year, at least in the DCOPF setup. Analysis variables

provide operational signals to the investment problem. However, to get a clearer estimate

of what their future values could be, production cost models must be run once the optimal

infrastructure is found.

A key requirement to maintain computational tractability in ARO is to have fixed recourse.

This means that when affine rules are plugged into the model described previously, there

cannot be any product between uncertain parameters. In RO theory, uncertain parameters are

characterized using affine perturbations. In order to satisfy the fixed recourse condition, we

consider modeling uncertainties in F̃Ck,f,t ∈ UFC , d̃ ∈ Ud, and F̃max ∈ UFmax
. UFC , Ud, and

UFmax
represent the projections of the uncertainty set into the spaces of fuel cost, demand, and

transmission capacity.

Investments in capacity can be affine functions of all these three uncertainties in It. However,

if investments depended on d̃ and F̃max, the objective function would face more risks given the

variability of these parameters. Therefore, we only allow investments to be affine functions of

F̃C. To avoid extra computational effort the dependence relies only on t − 1 uncertainties as

follows:

Capadd
i,j,t ≡ γ0

i,j,t +
1{t≥2}

|Φ|
∑
k,f

γFCi,j,t,f F̃Ck,f,t−1, ∀i, j, t (4.20)
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where UFC represents the uncertainty set that defines fuel cost uncertainty. The resulting

values of the γ coefficients may help us understand the role (at least marginally speaking) of

the uncertainties in the problem; their signs tell us whether or not the impact of a specific

uncertainty favors the investment of capacity, whereas their magnitudes inform us about the

relative impact of the uncertainty between all the investment decisions.

Similarly, we set the decision rules of the analysis variables. Although power generation of

fuel-based technologies cannot be adjustable due to fixed recourse requirements, nonfuel-based

power generation does fulfill the requirement. As in the investment rule, we do not want to

add more variability to the objective function allowing power generation to depend on d̃ and

Fmax. So, for convenience, we allow each Pi,s,u,t to depend on each F̃Ck,f,t and F̃Ck,f,t−1 as

follows:

Pi,s,u,t ≡β0
i,s,u,t +

1{t=1}

|Φ|
∑
k,f

βFCi,s,u,1,f,1F̃Ck,f,1

+
1{t≥2}

|Φ|
∑
k,f

t∑
τ=t−1

βFCi,s,u,t,f,τ F̃Ck,f,τ , ∀i, s, u, t (4.21)

Voltage angles, on the contrary, are allowed to depend on d̃ and Fmax as follows:

θi,s,t ≡α0
i,s,t +

∑
k,s′

αdi,s,t,k,s′,τ d̃k,s′,τ +
1

|L|
∑
l,τ

αF
max

i,s,t,τ F̃
max
l,τ , ∀i, s, t (4.22)

The reason is that these coefficients (αd and αF
max

) have potential to reduce the protection

terms as will be seen in Section 5.5.2.

4.4.3 Uncertain capacity expansion plan problem

In this section, we show the uncertain version of the capacity expansion model shown in

Section 4.3.
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minimize
Capadd,P,θ

∑
t,i,j

cadd
i,j,tγ

0
i,j,t +

∑
t,i,s,u

ζt−1OMv
u,tβ

0
i,s,u,ths +

∑
t,i,s,f

ζt−1
∑
m∈Ψf

OMv
m,tPi,s,m,ths

+

T∑
t=2

∑
k,f

F̃Ck,f,t−1

(∑
i,j

cadd
i,j,t

|Φ|
γFCi,j,t,f +

∑
i,s,u

t∑
τ=t−1

ζτ−1
OMv

u,τ

|Φ|
hsβ

FC
i,s,u,τ,f,t−1

+
∑

s,m∈Ψf

ζt−2HmPk,s,m,t−1hs

)
+
∑
k,f

F̃Ck,f,T

(∑
i,s,u

ζT−1
OMv

u,T

|Φ|
hsβ

FC
i,s,u,T,f,T

+
∑

s,m∈Ψf

ζT−1HmPk,s,m,Ths

)

subject to

Capacity reserve:∑
i,j

t∑
τ=1

γ0
i,j,τ +

∑
k,f

∑
τ≥2

F̃Ck,f,τ−1

∑
i,j

γFCi,j,τ,f
|Φ|

≥
∑
i,j

{
Capexist

i,j −
t∑

τ=1

Capret
i,j,τ

}
+ (1 + r)

∑
i

d̃i,peak,t, ∀t (4.23)

Credited capacity of fuel-based technologies:

Pi,s,m,t − 1{t≥2}

t∑
τ=2

∑
k,f

F̃Ck,f,τ−1
CCi,m,s
|Φ|

γFCi,m,τ,f

≤ C̃Ci,m,s

[
Capexist

i,m −
t∑

τ=1

(
Capret

i,m,τ − γ0
i,m,τ

)]
, ∀i, s,m, t (4.24)

Credited capacity of nonfuel-based technologies:

β0
i,s,u,t − 1{t≥3}

t−1∑
τ=2

∑
k,f

F̃Ck,f,τ−1
CCi,u,s
|Φ|

γFCi,u,τ,f

+
∑
k,f

(
1{t≥2}

F̃Ck,f,t−1

|Φ|
(
βFCi,s,u,t,f,t−1 − CCi,u,sγFCi,u,t,f

)
+
F̃Ck,f,t
|Φ|

βFCi,s,u,t,f,t

)
− CCi,u,s

t∑
τ=1

γ0
i,u,τ

≤ C̃Ci,u,s

(
Capexist

i,u −
t∑

τ=1

Capreti,u,τ

)
, ∀i, s, u, t (4.25)

Maximum capacity factor of fuel-based technologies:



www.manaraa.com

66

∑
s

h′sPi,s,m,t − 1{t≥2}

t∑
τ=2

∑
k,f

F̃Ck,f,τ−1
CFi,m
|Φ|

γFCi,m,τ,f

≤ CFi,m

[
Capexist

i,m −
t∑

τ=1

(
Capret

i,m,τ − γ0
i,m,τ

)]
, ∀i,m, t (4.26)

Maximum capacity factor of nonfuel-based technologies:∑
s

h′sβ
0
i,s,u,t − 1{t≥3}

t−1∑
τ=2

∑
k,f

F̃Ck,f,τ−1
CFi,u
|Φ|

γFCi,u,τ,f

+
∑
k,f

(
1{t≥2}F̃Ck,f,t−1

(∑
s

h′s
|Φ|

βFCi,s,u,t,f,t−1 −
CFi,u
|Φ|

γFCi,u,t,f

)
+ F̃Ck,f,t

∑
s

h′s
|Φ|

βFCi,s,u,t,f,t

)

≤ C̃F i,u

(
Capexist

i,u −
t∑

τ=1

(
Capret

i,u,τ − γ0
i,u,τ

))
, ∀i, u, t (4.27)

Nodal power balance:∑
n

ai,nα
0
n,s,t −

∑
m

Pi,s,m,t −
∑
u

β0
i,s,u,t + d̃i,s,t

(∑
n

ai,nα
d
n,s,t,i,s,t +

1

Sbase

)

+
∑

k 6=i,s′ 6=s,τ 6=t
d̃k,s′,τ

∑
n

ai,nα
d
n,s,t,k,s′,τ +

∑
l,τ

F̃max
l,τ

∑
n

ai,n
|L|

αF
max

n,s,t,l,τ

− 1{t=1}
∑
k,f

F̃Ck,f,1
|Φ|

βFCi,s,u,1,f,1 − 1{t≥2}
∑
k,f

t∑
τ=t−1

F̃Ck,f,τ
|Φ|

βFCi,s,u,t,f,τ ≤ 0, ∀i, s, t (4.28)

Maximum transmission capacity:∑
i

Si,lα
0
i,s,t + F̃max

l,t

(∑
i

Si,l
|L|

αF
max

i,s,t,t −
1

blSbase

)
+

∑
l′ 6=l,τ 6=t

F̃max
l′,τ

∑
i

Si,l
|L|

αF
max

i,s,t,τ

+
∑
k,s′,τ

d̃k,s′,τ
∑
i

Si,lα
d
i,s,t,k,s′,τ ≤ 0, ∀l, s, t (4.29)

Minimum transmission capacity:

−
∑
i

Si,lα
0
i,s,t − F̃max

l,t

(∑
i

Si,l
|L|

αF
max

i,s,t,t +
1

blSbase

)
−

∑
l′ 6=l,τ 6=t

F̃max
l′,τ

∑
i

Si,l
|L|

αF
max

i,s,t,τ

−
∑
k,s′,τ

d̃k,s′,τ
∑
i

Si,lα
d
i,s,t,k,s′,τ ≤ 0, ∀l, s, t (4.30)

Minimum investments:

γ0
i,j,t + 1{t≥2}

∑
k,f

F̃Ck,f,t−1

|Φ|
γFCi,j,t,f ≥ 0, ∀i, j, t (4.31)

Voltage angle limits:
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∣∣∣∣∣∣α0
i,s,t +

∑
l,τ

F̃max
l,τ

|L|
αF

max

i,s,t,l,τ +
∑
k,s′,τ

d̃k,s′,τα
d
i,s,t,k,s′,τ

∣∣∣∣∣∣ ≤ π,
∀i, s, t (4.32)

Minimum power generation:

β0
i,s,u,t + 1{t=1}

∑
k,f

F̃Ck,f,1
|Φ|

βFCi,s,u,1,f,1 + 1{t≥2}
∑
k,f

t∑
τ=t−1

F̃Ck,f,τ
|Φ|

βFCi,s,u,t,f,τ ≥ 0, ∀i, s, u, t (4.33)

4.5 Robust Optimization framework

In this section, we show how an optimization problem with uncertainty in parameters a

(w.l.o.g.) is transformed to its RC. Consider the following uncertain linear program:

minimize
x∈<n

c>x

subject to a>i x ≤ bi, i = 1, . . . ,m.

A ∈ U

(4.34)

A ∈ <m×n, b ∈ <m, and c ∈ <n are arrays of uncertain parameters that lie in a convex

uncertainty set U defined on <m×n. Let ā and â be vectors defined in <n that denote the

nominal values and variability of data respectively. Bounded uncertainty can be modeled as

a = ā+Ω η â with each element in the uncertain vector η bounded by the primitive uncertainty

set Z. Ω is usually 1; however, risk averse decision makers tend to expand the uncertainty set

and Ω can achieve values of 2–3.

A tractable RC of (4.34) is obtained when the primitive uncertainty set Z has special

properties such as convexity. In order to maintain linearity, a reduced number of auxiliary

variables, and a low level of conservatism in the solution, we use the l1-norm type of uncertainty,

i.e., ‖η‖1 ≤ 1. Thus the RC we will be dealing with is

minimize
x

c>x

subject to ā>i x+ Ωi max
k=1,...,n

(âi,k |xk|) ≤ bi, i = 1, . . . ,m

(4.35)

Problem (4.35) is a convex, tractable, and linear representation of an optimization problem

containing uncertainty in data lying in U . The RO problem obtained in Section 4.4.3 can be
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transformed into its AARC by using model (4.35). Indeed, in Chapter 5, the linear program

(4.35) will be written in terms of the protection terms zi, i = 1, . . . ,m as follows:

minimize
x

c>x

subject to ā>i x+ Ωi zi ≤ bi, i = 1, . . . ,m

− zi ≤ âi,k xk ≤ zi, i = 1, . . . ,m

(4.36)

4.6 Conclusions

In this chapter, we have presented a deterministic and an uncertain version of the CEP

problem. Given the computational tractability of novel techniques like RO, we presented how

the CEP solution can become more flexible by using ARO. Compared to SP, ARO presents

valuable advantages like its tractability and its ability to represent continuous uncertainties

rather than discrete samples. In our setup, investment decisions, power generation of nonfuel-

based technologies, and voltage angles are optimization variables that are parameterized as

affine functions of elements of information sets. Finally, our ARO model was presented ex-

tracting the common uncertainties in each constraint. In Chapter 5 we obtain the AARC of

the CEP model, which is the safe optimization problem whose solution is fully robust against

any disturbance realized within the set U .
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CHAPTER 5. ADJUSTABLE DECISIONS FOR REDUCING THE

PRICE OF ROBUSTNESS IN POWER SYSTEM CAPACITY

EXPANSION PLANNING —RESULTS

5.1 Chapter overview

In Chapter 4, the affinely ARO technique was presented and applied to the multi-stage

power system CEP problem that considered uncertainties in fuel cost, demand, and transmis-

sion capacity. Now, with the help of RO theory we present the AARC of the power system

CEP problem. Additionally, the model is developed such that the DDP algorithm can be

used alternatively. Results over on the planning of a 40-year horizon, 5-region, 13-technology

simplified version of the US power system are presented. Different AARC and RC soluions

are compared. The key finding is based on how the AARC chooses the decision rules in the

operational variables to avoid the risk-averse formulation in the RC and unnecessary extra high

costs. The robustness test show that the RC is competitive only when the system faces larger

uncertainties than those modeled. But, for uncertainties within the uncertainty sets, the extra

total cost of the AARC solution with respect to the PF solution is only 1.7%.

5.2 Introduction

When uncertainties are parameterized in form of convex and tractable uncertainty sets, an

uncertain optimization problem is nowadays solvable by RO methods. Many, although not

all, of the uncertainties involved in the planning process of power systems can be effectively

represented in this form when it comes to finding robust solutions. In RO theory, a solution is

robust if it is feasible against any realization of the uncertainties included in the uncertainty

set. Adapting the concept of robustness exposed in RO theory to power system CEP, a design
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is said to be 100% robust when it can satisfy demand at every moment without violating any

operational constraint.

The level of robustness in the design can be controlled by selecting more or less conservative

types of uncertainty sets, and/or increasing or decreasing their sizes. However, a realistic

approach must be able to achieve “acceptable” levels of robustness at low cost since the cost of a

fully robust system designed with box-shaped (l∞-norm) uncertainty sets might be prohibitive.

Then, to avoid incurring a high cost of robustness, in Chapter 4, we “arbitrarily” set up affine

decision rules dependent on (l1-norm) uncertainties. In particular, investments in capacity,

power generation and voltage angles are affine functions of fuel costs, transmission capacity, and

power demand. As mentioned in Chapter 4, one of the key advantages of this approach, known

as ARO, is the decrease in the price of robustness compared to a traditional static/unadjustable

RO application.

In this chapter we derive a “safe” version of the optimization problem, namely the affinely

adjustable robust counterpart that guarantees robustness; and we present a methodology to

decouple to alternatively solve this type RO problems using DDP.

5.3 AARC of our CEP Problem

The ARO model presented in Chapter 4 is now transformed into its RC by applying the

RO concepts presented in Section 4.5. The way the ARO model was presented, in which terms

of common uncertainties in each constrained were grouped, is useful for deriving the AARC

and obtaining the corresponding constraints of the protection terms.

An interesting feature of the AARC is its high inter-temporal connectivity. Time τ con-

straints and the objective function contain terms from time t = 1 up to t = τ . This structure

is not convenient if a decomposition method will be implemented. In lemma 1 and corollary 2

(see appendix A), we show some results that allow us to obtain an equivalent problem where

only consecutive stages are coupled. This structure does satisfy the requirements of DDP.

Then, the AARC of our CEP model becomes:
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minimize
Capadd,P,δ

∑
t,i,j

ζt−1Ii,j,t

(
γ0
i,j,t +

1{t≥2}

|Φ|
∑
k,f

γFCi,j,t,fFCk,f,t−1

)

+
∑
t,i,j

ζt−1

OM f
j,t − 1{t=T}

∑
i,j

SVi,j

Capi,j,t

+
∑
t,i,s,u

OMv
u,t

(
β0
i,s,u,t +

1{t=1}

|Φ|
∑
k,f

βFCi,s,u,1,f,1FCk,f,1hs

+
1{t≥2}

|Φ|
∑
k,f

t∑
τ=t−1

βFCi,s,u,t,f,τFCk,f,τhs

)
+
∑
t,i,s,f

ζt−1
∑
m∈Ψf

(
HmFCi,f,t +OMv

m,t

)
Pi,m,s,ths

+ Ωobj σT

subject to

Risk constraints 1 :

hrisk1
k,f,t − σt−1 + F̂Ck,f,t−1

(∑
i,j

cadd
i,j,t

|Φ|
γFCi,j,t,f +

∑
i,s,u

t∑
τ=t−1

ζτ−1
OMv

u,τ

|Φ|
hsβ

FC
i,s,u,τ,f,t−1

+
∑

s,m∈Ψf

ζt−2HmPk,s,m,t−1hs

)
= 0, ∀k, f, t ≥ 2 (5.1)

Risk constraints 2 :

hrisk2
k,f,t − σt−1 − F̂Ck,f,t−1

(∑
i,j

cadd
i,j,t

|Φ|
γFCi,j,t,f +

∑
i,s,u

t∑
τ=t−1

ζτ−1
OMv

u,τ

|Φ|
hsβ

FC
i,s,u,τ,f,t−1

+
∑

s,m∈Ψf

ζt−2HmPk,s,m,t−1hs

)
= 0, ∀k, f, t ≥ 2 (5.2)

Risk constraints T:

σT ≥ F̃Ck,f,T

(∑
i,s,u

ζT−1
OMv

u,T

|Φ|
hsβ

FC
i,s,u,T,f,T +

∑
s,m∈Ψf

ζT−1HmPk,s,m,Ths

)
, ∀k, f (5.3)

Risk state equations:

σt − σt−1 − hrisk
t = 0, ∀t ≥ 2 (5.4)

Reserve:

−
∑
i,j

Capi,j,t + Ω zres
t ≤ −

∑
i∈Φ

(1 + r) d̄i,peak,t, ∀t (5.5)



www.manaraa.com

72

zres
t ≥ (1 + r) d̂i,peak,t (5.6)

zres
t ≥ z2 res

t

z2 res
t ≥ F̂Ck,f,τ−1

∣∣∣∣∣∣
∑
i,j

γFCi,j,τ,f
|Φ|

∣∣∣∣∣∣ , ∀k, f, τ ≥ 2

Capacity update:

Capi,j,t − 1{t≥2}Capi,j,t−1 − γ0
i,j,t −

∑
k,f

FCk,f,t−1

|Φ|
γFCi,j,t,f

= 1{t=1}Cap
existing
i,j − Capret

i,j,t, ∀i, j, t (5.7)

Credited capacity of fuel-based technologies:

Pi,s,m,t − CCi,m,sCapi,m,t + Ω zCC acum
i,s,m,t ≤ 0, ∀i, s,m, t

zCC acum
i,s,m,t ≥

F̂Ck,f,t−1

|Φ|
CCi,m,s

∣∣γFCi,m,t,f ∣∣ , ∀i, s,m, t ≥ 2

Credited capacity of nonfuel-based technologies:

β0
i,s,u,t +

1

|Φ|
∑
k,f

t∑
τ=max(t−1,1)

βFCi,s,u,t,f,τFCk,f,τ − CCi,u,sCapi,u,t + Ω zCC
i,s,u,t ≤ 0, ∀i, s, u, t (5.8)

zCC
i,s,u,t ≥

F̂Ck,f,t−1

|Φ|

∣∣∣βFCi,s,u,t,f,t−1 − CCi,u,sγFCi,u,t,f
∣∣∣, t ≥ 2

zCC
i,s,u,t ≥

F̂Ck,f,t
|Φ|

∣∣βFCi,s,u,t,f,t∣∣ ,∀i, s, u, k, f, t (5.9)

zCC acum
i,s,u,t ≥

F̂Ck,f,t−1

|Φ|
CCi,u,s

∣∣γFCi,u,t,f ∣∣ , ∀i, s, u, k, f, t ≥ 2

zCC
i,s,u,t − zCC acum

i,s,u,t−1 − hCC
i,s,u,t = 0, ∀i, s, u, t ≥ 3 (5.10)

zCC acum
i,s,j,t − zCC acum

i,s,j,t−1 − hCC acum
i,s,j,t = 0, ∀i, s, u, t ≥ 3

Maximum capacity factor of fuel-based technologies:∑
s

αsPi,s,m,t − CFi,mCapi,m,t + Ω zCF acum
i,m,t ≤ 0, ∀i,m, t

zCF acum
i,m,t ≥

F̂Ck,f,t−1

|Φ|
CFi,m

∣∣γFCi,m,t,f ∣∣ , ∀i, s,m, t ≥ 2

Maximum capacity factor of nonfuel-based technologies:
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∑
s

h′sβ
0
i,s,u,t +

1

|Φ|
∑
k,f

t∑
τ=max(t−1,1)

βFCi,s,u,t,f,τFCk,f,τ − CFi,uCapi,u,t + Ω zCF
i,u,t ≤ 0, ∀i, u, t

(5.11)

zCF
i,u,t ≥

F̂Ck,f,t−1

|Φ|

∣∣∣∑
s

h′sβ
FC
i,s,u,t,f,t−1 − CFi,uγFCi,u,t,f

∣∣∣, t ≥ 2

zCF
i,u,t ≥

F̂Ck,f,t
|Φ|

∣∣∣∣∣∑
s

h′sβ
FC
i,s,u,t,f,t

∣∣∣∣∣ ,∀i, u, k, f, t (5.12)

zCF acum
i,u,t ≥

F̂Ck,f,t−1

|Φ|
CFi,u

∣∣γFCi,u,t,f ∣∣ , ∀i, u, k, f, t ≥ 2

zCF
i,u,t − zCF acum

i,u,t−1 − hCF
i,u,t = 0, ∀i, u, t ≥ 3 (5.13)

zCF acum
i,j,t − zCF acum

i,j,t−1 − hCF acum
i,j,t = 0, ∀i, u, t ≥ 3

Nodal power balance:∑
n

b′i,nθ̄n −
∑
m

Pi,s,m,t −
∑
u

P̄i,s,u,t + Ω zdi,s,t ≤ −d̄i,s,t, ∀i, s, t (5.14)

zdi,s,t ≥ d̂i,s,t

∣∣∣∣∣∑
n

b′i,nα
d
n,s,t,i,s,t +

1

Sbase

∣∣∣∣∣ , ∀i, s, t (5.15)

zdi,s,t ≥ d̂k,s′,τ

∣∣∣∣∣∑
n

b′i,nα
d
n,s,t,k,s′,τ

∣∣∣∣∣ , ∀k 6= i, s′ 6= s, τ 6= t

zdi,s,t ≥ F̂max
l,τ

∣∣∣∣∣∑
n

b′i,n
|L|

αF
max

n,s,t,l,τ

∣∣∣∣∣ , ∀i, s, t, l, τ
zdi,s,t ≥

F̂Ck,f,t−1

|Φ|
∣∣βFCi,s,u,t,f,t−1

∣∣ , ∀i, s, t ≥ 2, k, f

zdi,s,t ≥
F̂Ck,f,t
|Φ|

∣∣βFCi,s,u,t,f,t∣∣ , ∀i, s, t, k, f
Maximum and minimum transmission capacity:

−
∑
i

Si,lθ̄i,s,t + Ω zFmin
l,s,t ≤

F̄max

blSbase
, ∀l, s, t

∑
i

Si,lθ̄i,s,t + Ω zFmax
l,s,t ≤

F̄max

blSbase
, ∀l, s, t

zFmin
l,s,t ≥ F̂

max
l,t

∣∣∣∣∣∑
i

Si,l
|L|

αF
max

i,s,t,t +
1

blSbase

∣∣∣∣∣ , ∀l, s, t
zFmax
l,s,t ≥ F̂

max
l,t

∣∣∣∣∣∑
i

Si,l
|L|

αF
max

i,s,t,t −
1

blSbase

∣∣∣∣∣ , ∀l, s, t
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zFmin
l,s,t , z

Fmax
l,s,t ≥ F̂

max
l′,τ

∣∣∣∣∣∑
i

Si,l
|L|

αF
max

i,s,t,τ

∣∣∣∣∣ , ∀l, s, t, l′ 6= l, τ 6= t

zFmin
l,s,t , z

Fmax
l,s,t ≥ d̂k,s′,τ

∣∣∣∣∣∑
i

Si,lα
d
i,s,t,k,s′,τ

∣∣∣∣∣ , ∀l, s, t, k, s′, τ
Minimum investments:

− γ0
i,j,t − 1{t≥2}

∑
k,f

F̃Ck,f,t−1

|Φ|
γFCi,j,t,f + Ω zInv

i,j,t ≤ 0, ∀i, j, t

zInv
i,j,t ≥

F̂Ck,f,t−1

|Φ|
∣∣γFCi,j,t,f ∣∣ , ∀i, j, t ≥ 2

Voltage angle limits:

− θ̄0
i,s,t + Ω zθmin

i,s,t ≤ π, θ̄
0
i,s,t + Ω zθmax

i,s,t ≤ π, ∀i, s, t

zθmin
i,s,t , z

θmax
i,s,t ≥

F̃max
l,τ

|L|
∣∣αFmax

i,s,t,l,τ

∣∣ , ∀i, s, t, l, τ
zθmin
i,s,t , z

θmax
i,s,t ≥ d̃k,s′,τ

∣∣∣αdi,s,t,k,s′,τ ∣∣∣ , ∀i, s, t, k, s′, τ
Minimum power generation:

Pi,s,m,t ≥ 0, ∀i, s,m, t,

− P̄i,s,u,t + Ω zPmin
i,s,u,t ≤ 0, ∀i, s, u, t

zPmin
i,s,u,1 ≥

F̃Ck,f,1
|Φ|

∣∣βFCi,s,u,1,f,1∣∣ , ∀i, s, u
zPmin
i,s,u,t ≥

F̃Ck,f,τ
|Φ|

∣∣βFCi,s,u,t,f,τ ∣∣ , ∀i, s, u, t ≥ 2, τ = t− 1, t

In general, the AARC adapted to DDP, is nothing but the result of using the model (4.36),

lemma 1, and corollary 2 in the uncertain CEP problem presented in Section (4.4.3). The

AARC is an optimization problem where the uncertain terms of the objective function are

represented with their nominal value plus a risk or protection term σT that computes the

maximum variation of the objective function for that specific uncertainty set. In the case of

the constraints, there also exists a protection term z that inhibits the solution from being close

to the frontier of the feasibility set; thus, the solution can guarantee the inequality always holds

under any realization of uncertainty.
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5.4 Dual Dynamic Programming

The derived AARC is a multi-stage problem that can take advantage of the benefits of

decomposition techniques. Important references on DDP are Pereira and Pinto (1991) and

Newham (2008). The main idea of DDP is to solve a large multi-stage problem by iteratively

solving small single-stage optimization problems.

Like in dynamic programming (DP), DDP approximates the value of the objective function

of future stages by creating Benders-like cuts to link consecutive stages. However, DP at every

stage uses “many” discrete points of the variables corresponding to the previous stages. This

causes the “curse of dimensionality.” Rather, DDP uses a Benders-like approximation by using

information of the dual variables. In this sense, the DDP does not need to discretize any

decision variable and consequently does not suffer from the combinatorial explosion like DP

does.

Benders decomposition is a well known methodology that solves “intelligently” several small

optimizations lead by a driving (master) problem to solve the full problem. Similarly, the DDP

uses the same intelligence to obtain a piece-wise linear representation of the future objective

function at every stage. In fact, a two-stage DDP is exactly a Benders model as presented by

Pereira and Pinto (1991). In general, the DDP algorithm uses two main processes: forward

simulation and backward recursion. In the former, the solution of one stage is used to define

the solution space of the preceding stage optimization. This is done from t = 1 up to t = T .

The latter process is needed to find the sensitivities of the objective function generated by the

solutions in the forward simulation so as to create a Benders-like cut. These two processes

continue until the convergence criterion is satisfied.

5.4.1 Mathematical formulation

The AARC we developed can be represented as a linear program of the form
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minimize
x,y

∑
t

(
c>t xt + q>t yt

)
subject to Etxt +Gtyt = et − Ft−1xt−1, ∀t = 1, . . . , T

Atxt +Btyt ≤ bt, ∀t = 1, . . . , T

x0 given

The DDP approach that solves the time-decoupled version is presented as an algorithm as

follows:

Algorithm 1 DDP algorithm

Set i = 0, z =∞, z = −∞
while z − z ≥ ε do

for t = 1 to T − 1 do

Forward Simulation

if i ≥ 2 then

Solve updated version of problem (5.16) adding the following cut

pt ≥ pi−1
t,bwd − (πi−1

t+1,bwd)>Ft(xt − xi−1
t,fwd)

else

Solve problem (5.16)

end if

Set xit,fwd = x∗t , z
∗
t = c>t x

∗
t + q>t y

∗
t

if t = 1 then

Update lower bound:

z = p∗0 = z∗1 + p∗1
end if

end for

for t = T to 2 do

Backward Recursion

if t < T then

Solve updated version of problem (5.16) adding the following cut

pt ≥ pit,bwd − (πit+1,bwd)>Ft(xt − xit,fwd)

else if t = T then

Solve problem (5.16)

Update upper bound:

z =
∑T

t=1 z
∗
t

end if

Compute new cut

Set pit−1,bwd = p∗t−1, and πit,bwd = π∗t
end for

Update iteration: i← i+ 1

end while
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Where the stage-t optimization problem for both the forward simulation and the backward

recursion is given by

minimize
xt,yt

pt−1 = c>t xt + q>t yt + pt

subject to Etxt +Gtyt = et − Ft−1xt−1 : πt

Atxt +Btyt ≤ bt

pt ∈ <

(5.16)

The “updated” version of problem (5.16) is the optimization problem that, iteration after

iteration, collects all the p-cuts defined in the algorithm.

5.5 Numerical Results

5.5.1 Data

An application of the methodology was implemented using a simplified version of the US

power system aggregated in five regions: WECC, MRO, TRE-SPP, NPCC-RFC, SERC-

FRCC. The candidate portfolio considered consists of 13 technologies: Dual unit advanced

pulverized coal (CO), NGCC, nuclear (NUC), WND, hydro (WAT), SUN, OWND, ddvanced

combustion turbine (ACT), integrated gasification combined cycle with carbon sequestration

integrated gasification combined cycle with carbon sequestration (IGCCCS), biomass (BIO),

natural gas combined cycle with carbon sequestration (NGCCCS), GEO, and municipal solid

waste (MSW). CO, IGCCCS, NGCC, ACT, NGCCCS, and NUC form the fuel-based technol-

ogy set. The rest, renewable and alternative fuel technologies like MSW, form the nonfuel-based

technology set. Data was mostly obtained from EIA reports1.

Table 5.1 shows part of the data used for the initial year. Investment costs are averaged by

regions and shown in $million/MW. Investment costs are assumed to increase at annual rates

ranging from 0% in the case of WND and SUN up to 1.8% in the case of CO. For O&M data, an

annual increase rate of 0.5% is used. OMv and OM f are expressed in $/MWh and $/kW-year

respectively. Capacity factor changes geographically specially for renewables; for simplicity,

1Updated Capital Cost Estimates for Electricity Generation Plans – November 2010
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Table 5.1: Data for initial stage

Tech Ij OMv OM f CF j
CCj,s

speak smed sbase

CO 2.86 4.25 59.34 72.2 95 95 95

NGCC 1.04 3.11 29.24 40.6 95 95 95

NUC 5.38 2.04 177.50 91.1 95 95 95

WND 2.51 0.00 56.14 23.1 28 21 42

WAT 3.30 0.00 26.88 29.4 85 85 85

SUN 4.58 0.00 128.00 18.4 28 47 9

OWND 6.01 0.00 106.66 32.0 40 32 64

ACT 0.69 9.87 13.40 40.6 95 95 95

IGCCCS 5.30 8.04 138.60 72.2 95 95 95

BIO 3.85 5.00 201.00 37.3 40 40 40

NGCCCS 2.05 6.45 60.50 40.6 95 95 95

GEO 10.47 9.64 168.54 18.0 10 10 10

MSW 8.11 8.33 747.52 37.3 40 40 40

Table 5.1 shows the averages in percentage. Capacity credit is especified in percentage for each

LDC step as shown in Table 5.1.

Fuel cost uncertainties of each region are plotted in Fig. 5.1. The regional average price

used for gas, coal, and uranium was $3.50/MMBTU, $2.80/MMBTU, and $0.90/MMBTU re-

spectively. The rates at which these prices change per year are 2%, 2%, and 1.5% for coal,

natural gas, and uranium respectively; with corresponding variabilities2 as fractions of the nom-

inal values of 35%, 50%, and 33% for coal, natural gas, and uranium respectively. Variabilities

increase at yearly rates of 0.1% in the case of coal and gas, and 1% in the case of uranium.

Total system demand uncertainties are shown in Fig. 5.2. Nominal power peak demand

of year 2009 is taken from Table 4.1 in EIA3. Variability with respect to the nominal value

was assumed 5%. For creating a three-step LDC, we assume the durations per day of each

step are 1, 13, and 10 hours for peak (late afternoon), medium (day), and base (night and

early morning) load respectively. The medium and base load nominal values are such that the

calculated energy demand for 2009 equals 3,950 TWh, the approximate actual 2009 energy

demand in the US. At every region, the rates at which nominal values and variability grows

2The variability is defined as the absolute value of difference between any of the bounds and the central value
of the uncertain variable

3Electric Power Annual 2009 – November 2010 – EIA
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(a) Coal Region 1
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(b) Gas Region 1
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(c) Uranium Region 1
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(d) Coal Region 2
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(e) Gas Region 2
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(f) Uranium Region 2
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(g) Coal Region 3
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(h) Gas Region 3
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(i) Uranium Region 3
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(j) Coal Region 4
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(k) Gas Region 4
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(l) Uranium Region 4

0

2

4

6

8

10

12

2
0

0
9

2
0

1
3

2
0

1
7

2
0

2
1

2
0

2
5

2
0

2
9

2
0

3
3

2
0

3
7

2
0

4
1

2
0

4
5

$
/M

M
B

T
U

 

Year 

SERC-FRCC 

(m) Coal Region 5
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(n) Gas Region 5
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(o) Uranium Region 5

Figure 5.1: Fuel price uncertainties
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Figure 5.2: System demand uncertainties

Table 5.2: Effects of levels uncertainty on the AARC and RC

Ωobj λ
Objective function ($billion)

RC AARC

1

0.5 3,048.00 2,934.91 (-3.71%)

1.0 3,247.38 3,041.05 (-6.35%)

1.5 3,449.60 3,153.14 (-8.59%)

2.0 3,654.21 3,280.05 (-10.24%)

2.5 3,860.25 3,420.27 (-11.40%)

3

0.5 3,059.60 2,944.70 (-3.76%)

1.0 3,271.48 3,061.91 (-6.41%)

1.5 3,486.52 3,185.64 (-8.63%)

2.0 3,704.75 3,224.22 (-12.97%)

2.5 3,925.56 3,476.79 (-11.43%)

PF 2851.66

are 1.3% and 4% respectively.

Retirements of capacity, plotted with negative values in Fig. 5.4 when units reach their

lifetime are also considered. Historical investments of the US up to 2008 are used to compute

the time the units have been operating and to estimate the moment of retirement. Lifetimes

of technologies like CO, NGCC, NUC, WND, and WAT are assumed to be 40, 30, 60, 25, and

150 years respectively.
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5.5.2 Comparing the AARC and static RC

In order to make fair conclusions regarding the AARC performance, we also obtained static

RO solutions. The RC planning model is obtained when coefficients of the decision rules that

multiply uncertain parameters are set to zero. For simplicity, the duration of each period

is 2 years. Given this, any of the linear programs obtained were solved by the commercial

optimization solver Mosek by Andersen and Andersen (2012).

Table 5.2 shows results of the RC and the AARC approach under different risk attitudes and

uncertainty sizes. Ωobj is used to control the level of variability of the objective function and

is the key factor that determines whether the optimal investment decisions are adjustable with

FC or not. And λ is a factor that multiplies all the nominal levels of variability considered in

F̂C, d̂, F̂max. The PF solution, obtained in a deterministic manner assuming all the uncertain

data is realized at their nominal values, is the lower bound of the RO models. Table 5.2 also

shows the relative savings (in parenthesis) as a result of modeling adjustable decisions in the

AARC.

In all cases, the AARC is allowed to freely adjust with fuel cost uncertainties. Recall that

we allow investment affine decision rules at time t to depend on information observed at t− 1.

In the case Ωobj = 1, coefficients γFC and βFC resulted in zero except αd. When Ωobj = 3,

investment decisions and power production of non-fuel based technologies are dependent on

F̃C, and voltage angles with d̃. In all the cases αFmax resulted different than zero; however, they

did not cause any change in the overall design and objective function.

Coefficients αd are key to provide adjustability and avoid too much conservatism in the

operational problem. This dependence does not worsen robustness at all since constraint (4.15)

holds for any d̃ ∈ Ud. These coefficients implicitly generate power flows depending on demand,

which is similar to having a power flow variable for each scenario of demand in a stochastic

programming setup. Fig. 5.3 shows the power flows of the RC, AARC, and PF solutions at

year 40 during peak demand period. AARC power flows are represented in terms of the demand

primitive uncertainties η of each region. These variable flows in turn produces a power dispatch

at every bus that is not worst-case demand oriented since the AARC takes complete advantage
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Figure 5.3: Power flows as function of primitive uncertainties of demand

of the shape of Ud. On the other hand, power flows modeled in the RC case are unadjustable

because they should be robust under any demand realization. Thus, RC solution is risk averse

and assumes demand can be realized at its worst-case value at every region and at the same

time. The reason is that in the RC model, each constraint (4.15) has only one uncertain term

d̃.

AARC total generation at every region is less conservative than RC, but it is robust under

any variation of the uncertainties displayed. In either the AARC or RC, generation is only

informative, i.e., it does not forecast or estimate the future actual generation, but provides the

appropriate operational signals under uncertainty to the investment problem.

Compared to the RC solution, what is remarkable in the AARC is its signifficant lower

cost while being as robust as the RO solution (given that uncertainties actually fall in the

uncertainty set). Even with the nominal uncertainty (λ = 1), the AARC objective function is

6.35% less costly than RC’s. In other words, savings are above $200 billion in 40 years ($5,000

million/year) compared to the RC model.
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Figure 5.4: Total expected investments and retirements of the system (Ωobj = 1, λ = 1)
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Figure 5.5: AARC installed capacity (Ωobj = 1, λ = 1)
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5.5.3 Planning solutions

Fig. 5.4 shows the total yearly investment strategies for some of the cases of Table 5.2.

All of the designs choose NGCC and ACT power plants to expand the system. The difference

between all the designs relies on quantity and distribution of resources across the network. The

AARC investments, although larger then PF’s, are smaller than RC’s. This results in lower

investment costs. Retirements of NGCC capacity strongly incentivizes more investments in

NGCC as depicted in Fig. 5.4. In the end of the planning horizon, ACT investments also

participates in the optimal portfolios since NGCC energy production is limited by its capacity

factor. Fig. 5.5 shows the evolution of the total net installed capacity of the system of the

AARC. Coal and nuclear capacity decrease since no additional investments are made. The gap

between total installed capacity and total demand is increasing in time given the increasing

amount of uncertainty in time as well.

In terms of operation, NGCC is the key player. Its participation in the energy market is

75% in 2049. Initially, energy produced by coal units are more predominant during base load

periods reaching participation close to 50%. By 2049, its participation will only reach 15% in

base load periods. In peak and medium load periods, energy will be provided mostly by NGCC

and ACT units.

According to our computations when Ωobj is approximately greater than 2, investments

become adjustable; otherwise optimal coefficientes γ are zero. As an example, below are the

resulting NGCC investment (in GW) as function of F̃C (in $/MMBTU) valid for the period

2011–2012:

Capadd
NGCC,2011 =



13.3

10.3

4.6

0.0

0.0


+



−0.8 −0.6 3.6

−7.1 −5.1 32.6

−3.2 −2.3 14.5

0.0 0.0 0.0

0.0 0.0 0.0




F̃Ccoal,2009

F̃Cgas,2009

F̃Cur,2009



If coal price increases in 2009, coal power production is reduced and is replaced by NGCC

production. This causes both fuel cost expenses and its associated risk to increase given that
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gas price is higher and more volatile than coal. Thus, for avoiding future higher risk in fuel

expenses, the model inhibits NGCC investments with increments of coal price (negative sign

of coefficients multiplying F̃Ccoal,2009). On the other hand, increments in natural gas price

reduces potential investments of NGCC units. More energy would be produced by coal than

NGCC with potential gas price increments. When uranium price tends to increase, NUC energy

is replaced mostly by NGCC production, encouraging more investments in this technology.

5.5.4 Price of Robustness

The term “price of robustness (PoR)”, proposed in Bertsimas and Sim (2004), is used here

to more carefully assess the economic performance of the RO-based planning solutions. For

computing the total cost of the system, we split the investment cost from operational cost.

The investment cost is computed using the investment strategies or rules in the case of AARC,

and the operational cost is computed simulating the actual system operation with a DCOPF.

At every year, capacity is added to and retired from the system, and the system is operated.

To verify robustness of the RC and the AARC solutions, we randomly generate primitive

uncertainties ηFC , ηd, ηF
max

within the uncertainty set Z:

Z =
{[
ηFC ; ηd; ηF

max
]

:
∥∥∥[ηFC ; ηd; ηF

max
]∥∥∥

1
≤ 1
}

Table 5.3 shows mean values (and standard deviations) of the objective function and the

PoR. For each of the 100 simulations, both the RC and AARC models are feasible as expected.

Based on this economic assessment, objective function values are lower than those of Table

5.2. This happens because in the design of the system, the model has to be feasible under the

most hazardous combination of all the uncertainties in U ; whereas in the DCOPF, a power

dispatch is computed for random realizations within U . For computing the mean objective

function in the PF case, a deterministic planning tool is run for each of the 100 realizations of

the uncertainties. The objective functions of both the AARC and RC are lower because the

operation is simulated for each realization. In average, the PoR of the AARC is less than 1.65%

in the case of nominal uncertainties.
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Table 5.3: Price of Robustness and (Standard Error) in ($billion)

Ωobj λ
Objective function PoR (%)

PF AARC RC AARC RC

1

0.5
2851.5 2869.9 2896.9 0.65 1.59

(1.19) (1.17) (1.17) (0.05) (0.01)

1.0
2851.3 2898.2 2951.5 1.65 3.51

(2.43) (2.37) (2.39) (0.01) (0.02)

1.5
2851.1 2930.3 3015.7 2.78 5.77

(3.66) (3.53) (3.64) (0.02) (0.03)

2.0
2850.8 2969.6 3086.5 4.17 8.27

(4.93) (4.72) (5.01) (0.03) (0.04)

2.5
2850.6 3016.2 3161.0 5.81 10.89

(6.26) (6.00) (6.50) (0.04) (0.06)

3

0.5
2851.5 2871.1 2897.0 0.69 1.60

(1.19) (1.10) (1.17) (0.01) (0.01)

1.0
2851.3 2900.8 2952.1 1.74 3.53

(2.43) (2.20) (2.39) (0.02) (0.02)

1.5
2851.1 2934.0 3017.3 2.91 5.83

(3.66) (3.28) (3.63) (0.03) (0.03)

2.0
2850.8 2975.2 3088.5 4.37 8.34

(4.93) (4.35) (5.00) (0.06) (0.04)

2.5
2850.6 3024.5 3163.3 6.10 10.97

(6.26) (5.53) (6.49) (0.08) (0.06)
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Figure 5.6: DDP convergence

5.5.5 DDP performance

The algorithm of DDP was implemented for solving the larger problems. In Fig. 5.6, we

show the convergence process of the DDP algorithm when we solved the AARC model with

Ωrisk = 1. We verified that the solution achieved by the DDP technique is exactly the same

as that found directly as a standard linear program. When the entire horizon of 40 years is

discretized in one-year periods, the optimization problem had 124,599 constraints and 25,039

variables. With DDP, we solve 80 small linear programs per iteration that are solved quickly

by using the hot-start capabilities of Mosek. Basis information of previous iterations are saved

to initialize the problems of future iterations. In this case, the algorithm achieved a relative

gap of 3.41× 10−6, and an absolute gap 0.01 in only seven iterations.

5.5.6 Robustness testing

For evaluating robustness of each design, we perform a 100-iteration MC simulation to

simulate the system operation throughout the first ten years of the planning horizon. We think

beyond ten years from now the designs become obsolete and investment decisions should be

reviewed. A DCOPF is also run for each of the 2-year periods; it takes the system capacity

as given and computes both the power generation of each technology and the voltage angles

for each step of the LDC for every realization of the uncertainties. Demand, transmission



www.manaraa.com

88

Table 5.4: Robustness test results: mean (standard error)

Ωobj λ
ENS (TWh) ENSP (%)

AARC RC AARC RC

1

1.0
59.0 10.8 0.141 0.026

(75) (16) (0.179) (0.039)

1.5
19.8 0.3 0.047 0.001

(39) (1) (0.093) (0.003)

2.0
4.0 0.0 0.010 0.00

(13) (0.0) (0.030) (0.00)

3

1.0
43.0 10.8 0.103 0.03

( 52) (16) (0.124) (0.039)

1.5
11.6 0.3 0.028 0.00

(23) (1) (0.055) (0.003)

2.0
1.7 0.0 0.004 0.00

(8) (0.0) (0.018) (0.0)

PF 220.7 (146) 0.529 (0.35)

capacity, and fuel cost data are randomly generated using uniform distributions doubling (λ =

2) their uncertainty space. Generating independent and uniformly distributed random numbers

is equivalent to use uncertainties that come from box-shaped uncertainty sets, which contains

much more uncertain elements than our l1-norm set. Thus, our designs with λ = 1 and λ = 1.5

are exposed to multiple combinations of uncertainties that were not considered both in the RC

and AARC models. For each MC iteration, the PF and RC system capacity does not change;

but, it does in the case of the adjustable robust plans with Ωobj = 3 according the optimal

coefficients γFC and the fuel cost data generated at each iteration.

Table 5.4 shows robustness indicators obtained from the simulation. Indicators are the

sample mean and standard error of ENS and Energy not served percentage (ENSP) over the

first 10-year period respectively. EENSP is computed as the average ratio between total ENS

and total energy demand realized over the 10-year period.

A quite conservative criterion we use for determining the level of robustness is when ENSP

< 1/3650. If the system curtailment ratio is equal or less than the energy demand of one day

in ten years, it is said to be robust. As expected, the designs obtained with λ = 1 exceed

this threshold except the RC solution. The RC solutions perform well even when in the case

of λ = 1.5. The PF design displays the poorest robustness indicators. The AARC solution
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displays robustness when λ = 2. Based on results presented in Table 5.2, this design is still

less costly than the RC solutions that satisfy the robustness threshold. In addition, the price

to pay for its robustness is only 4.37% as shown in Table 5.3.

5.6 Conclusions

Given the computational tractability of novel techniques, we presented how the AARC

solution of the CEP problem can be robust at lower PoR than the RC. In our setup, investment

decisions, power generation, and voltage angles are parameterized as affine functions of fuel

cost, demand, and transmission capacity. Through ARO the formulation, it is not required

obtaining discrete samples of uncertainties; therefore, the explicit representation of scenario

trees is avoided, making the consideration of multiple uncertainties computationally tractable.

Additionally, the model was presented in a way that the DDP algorithm could be used in the

case it was difficult to solve it as a standard linear program. Results over on the planning

of a 40-year horizon, 5-region, 13-technology simplified version of the US power system were

presented. Different AARC and RC soluions were compared.

The decision rules of the operational variables —voltage angles— were key to reduce the PoR

by avoiding the installment of additional unnecessary capacity to satisfy uncertain demand; and

the investment decisions are more adjustable as long as the risk in fuel costs expenses are more

penalized. The robustness test shows that high PoR of the RC is justified only when the system

faces larger uncertainties than those modeled; otherwise, the AARC is more competitive. But,

for uncertainties within the uncertainty sets, the PoR is only 1.7%.

Multi-stage planning is significantly benefited from ARO. Not only did the PoR can be

lowered; but also the decision rules depending on available information provide intuition about

what the effects of individual uncertainties are on the decisions. These features make of ARO

an interesting tool for long-term decision-making problems.
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CHAPTER 6. MAXIMIZING FUTURE FLEXIBILITY IN ELECTRIC

GENERATION PORTFOLIOS

6.1 Chapter overview

This chapter presents a methodology to obtain flexible future capacity expansion plans

under diverse types and sources of uncertainty classified as global and local. Global (or

high-impact) uncertainties allow us to create scenarios that train the flexibility-based plan-

ning model; whereas local uncertainties allow us to create uncertainty sets that model the

imperfect knowledge of each global uncertainty. Our methodology, rather than chooosing the

most flexible plan among a set of candidate solutions, actually designs a flexible system that is

less sensitive to the choice of scenarios. In addition to minimizing the investment and opera-

tional cost, the model minimizes its future adaptation cost to the conditions of other identified

scenarios via ARO. Results obtained with our methodology in a 5-region US system under a

40-year planning horizon show how a flexible system adapts to future high-impact uncertainties

is achievable at reasonable low costs with a low number of adaptation actions. A folding hori-

zon process where global uncertainties are guided by Markov chains was performed to measure

the degree of flexibility of the system and its cost under multiple operation conditions.

6.2 Introduction

The goal of the power system planning application reported in Chapters 3, 4, and 5 that

models uncertainties is to achieve high levels of robustness. A robust system is seen as one able

to perform well under any —small or large— perturbations resulting from the realizations of

uncertainties. However, achieving good robustness can be costly.

To avoid constructing robust but expensive power system expansion plans, we propose
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designing the expansion plans by maximizing future flexibility. According to the valuable

works in Zhao et al. (2009) and Zhao et al. (2011), a system is flexible when it can be adapted

cost-efficiently to any of the conditions characterizing the identified scenarios. A flexible system

will not necessarily provide robust strategies to all scenarios; rather, it will be a design that is

able to migrate and adjust, if needed, to the conditions of any scenario. The need is motivated

by market and/or regulatory changes in the future, making it likely that an adaptation or

migration process needs to take place.

Authors of paper Zhao et al. (2009) argue that the period between the plan design and its

actual implementation is long, and consequently, the revealed scenario once the system starts

to operate differs from the one considered for the initial design. As a result, the planning

solution has to be adapted in a timely and cost-effective way to the new conditions. The

cost of adapting a planning solution to a scenario is the cost of the new investment decisions

that guarantee the system will meet all of the requirements under the realized scenario. The

flexible plan is selected among a set of candidate planning solutions, as the one that minimizes

the worst-case adaptation cost. To the best of our knowledge, references Zhao et al. (2009,

2011); Maghouli et al. (2011) are the only applications that consider adaptation cost in the

power system literature. Real option valuation has been also used to obtain flexible planning

decisions Blanco et al. (2011). Related concepts of flexibility are presented in Balijepalli and

Khaparde (2010).

In this chapter, we focus on finding flexible planning solutions. However, rather than

selecting the best candidate, we propose an optimization model that actually designs the flexible

system. The model balances both the adaptation and investment costs; thus, the decision

maker can adjust, according to its preferences, the degree of flexibility in the final design. Our

model uses scenarios only to guide the flexible investment directions, and therefore the solution

—unlike the work Zhao et al. (2009)— is significantly less sensitive to the choice of scenario.

However, adaptation between scenarios is not meaningful when uncertainty characterizing

the scenarios is small. Rather, we use adaptation processes when the attributes of the revealed

scenario significantly differ from the nominal one. In cases where scenario impacts over the

planning solution are not significant, robustness to these small impacts could be more valuable
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than flexibility. Uncertainties can be classified into different categories according to their nature

as random and nonrandom as exposed in Maghouli et al. (2011); Buygi et al. (2006). But, for

the purposes of flexible planning, we classify them according to the impact produced on the

solution; where impact can be defined in terms of change in objective function and direction of

optimality of the perturbed solution with respect to the benchmark case.

According to the impact level, we distinguish two types of uncertainty:

1. global as those that produce a significant different trend in the solution. Examples of

global uncertainties can be the implementation of emissions policies, important shifts in

demand, unavailability of a resource such as coal or natural gas, regulation regarding

nuclear power plants operation or, an important drop in investment costs, among others.

They are typically categorical, i.e., not necessarily a numerical value. A policy-based

global uncertainty like imposition of a carbon dioxide (CO2) cap can have two realizations:

“yes” or “no.”

2. local, attached to each global uncertainty, are used to represent the imperfect knowledge

of the global through uncertainty sets. If the global uncertainty realization is categorical,

its corresponding local values would represent the range of values in cases where it applies.

For example, in the case of a CO2 cap, the local uncertainty only appears when the carbon

cap (COcap
2 ) is actually imposed, and it would represent a range of possible values of the

cap.

Fig. 6.1 shows the case of a numerical global uncertainty surrounded by its local uncertainty

set that grows in time.

Based on this uncertainty classification, we define scenarios for flexibility analysis con-

structed by realizations of global uncertainties. However, there is as yet no power system

application reported in the literature that actually allows imperfect knowledge of scenarios.

If an scenario considers low natural gas price being $4/MMBTU, and another considers high

natural gas price being $8/MMBTU, solutions still can be sensitive for values surrounding these

deterministic numbers. So, is there any reason why a high natural gas price assumption could

not be either $7.5/MMBTU or $8.9/MMBTU? We believe the answer is no. This is what mo-



www.manaraa.com

93

tivates consideration of local uncertainties where the attributes of each scenario become fully

parameterized through local uncertainty sets.

Traditionally, decision-making problems under uncertainty have been addressed by either

probabilistic methods like SP, decision analysis tools like minimization of regrets, and more

recently, by RO techniques. Probabilistic methods require distributions of random data, which

are not always easy to obtain. These methods based on distributions are insufficient by them-

selves under presence of nonrandom uncertainties such as policies, preferences, and government

decisions, which cannot be modeled by of distributions Kouvelis and Yu (1997). Mostly, regret

minimization employs multiple scenarios created by nonrandom uncertainties. However, the

solution is also sensitive to the choice of scenarios Higle and Wallace (2002). The decision

maker chooses the best solution as that which shows the most similar performance to the best

solution of each scenario Kouvelis and Yu (1997). In probabilistic methods decisions are made

before the scenario occurs; whereas in decision theory (or risk analysis) tools, decisions are

made based on consequences of scenario occurrence Miranda and Proenca (1998a). This also

applies to minimization of adaptation cost where consequences of wrong decisions are actually

evaluated. Some applications of regrets minimization in power system planning are reported in

references Maghouli et al. (2011); Gorenstin et al. (1993); Miranda and Proenca (1998a); De la

Torre et al. (1999); Fang and Hill (2003); Cámac et al. (2010); Arroyo et al. (2010).

Appart from SP and regret minimization, RO has become a popular and powerful tool for

handling uncertain-but-bounded data in optimization problems Ben-Tal et al. (2004, 2009).

Obtaining data bounds from historical information is easier than determining the probability

distributions. The robust counterpart of a RO model is tractable as long as uncertainty sets

are also tractable, which is usually the case. Recent applications of RO in power systems are in

plug-in hybrid vehicles Hajimiragha et al. (2011), security constrained unit commitment Street

et al. (2011), and unit commitment under wind output uncertainty Jiang et al. (2012).

This chapter, rather than chooosing the most flexible plan among a set of candidate so-

lutions, designs a flexible system. A reduced-but-representative set of candidates is used to

train the model, whereas imperfect knowledge of each scenario is modeled with the correspond-

ing local uncertainties. The resulting “doubly” uncertain optimization problem is tackled via
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Figure 6.1: Global and local uncertainties

ARO. In this approach, we minimize, not only investment and operational cost, but also the

future adaptation cost of the system to any other scenario’s conditions. A double Monte Carlo

method is performed to verify both the adaptability of the system to new environments and

also the robustness against local perturbances in data.

6.3 A Capacity expansion planning Model

The CEP problem consists of, in general, identifying the most cost-efficient energy portfolio

that will supply the energy needs of the system in a sustainable and resilient way. “Identifying”

refers to finding the right amounts on investments in time and location such that future energy

needs are satisfied by considering technical, societal and environmental issues, and uncertainty.

The analytical version of the CEP problem used in this work is stated as deciding how

much power capacity to invest in from a set of fossil fuel and renewable generation technologies.

Finding the best portfolio not only requires minimizing costs and satisfying demand, but also

variability caused by renewable generation and different sources of uncertainty in costs, prices,

regulation, policies, and demand. We model a multi-stage long-term investment problem that

receives technical and economic signals from the annual operating problem based on a LDC

and a DCOPF.
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6.3.1 Uncertain Planning

In this section, we present a complete version of the CEP problem accounting for uncer-

tainty. Global uncertainties are bolded, and local uncertainties have a tilde ∼. The set that

contains all the scenarios is Θ. The CEP problem under one scenario ω ∈ Θ can be stated as:

minimize
Capadd,P,δ

∑
t,i,j

ζt−1Ĩi,j,t,ωCap
add
i,j,t,ω

+
∑
t,i,j

ζt−1

(
OM f

j,tCapi,j,t,ω +OMv
j,t

∑
s

Pi,j,s,t,ωhs

)
(6.1)

+
∑
t,i,f,s

ζt−1F̃Ci,f,t,ω

 ∑
m∈Ψf

HmPi,m,s,t,ωhs

− ζT−1
∑
i,j

S̃Vi,j,ωCapi,j,T,ω

subject to

Capi,j,t,ω = Capi,j,t−1,ω + Capadd
i,j,t,ω − Capret

i,j,t, ∀i, j, t (6.2)

Capi,j,0,ω = Capexisting
i,j , ∀i, j (6.3)∑

i,j

Capi,j,t,ω ≥
∑
i∈Φ

(1 + r) d̃i,peak,t,ω, ∀t (6.4)

Pi,j,s,t,ω ≤ C̃Ci,j,sCapi,j,t,ω, ∀i, j, s, t (6.5)∑
s∈S

Pi,j,s,t,ωhs ≤ C̃F i,jCapi,j,t,ω
∑
s∈S

hs, ∀i, j, t (6.6)

∑
j

Pi,j,s,t,ω − Sbase
∑
k

b′i,kθk,t,ω ≥ d̃i,s,t,ω, ∀i, s, t (6.7)

Sbasebl

∣∣∣∣∣∑
i

Si,lθi,t,ω

∣∣∣∣∣ ≤ F̃max
l,t,ω, ∀l, s, t (6.8)

∑
u,s

Pi,u,s,t,ωhs ≥ ρ̃t,ω
∑
j,s

Pi,j,s,t,ωhs (6.9)

∑
j,s

ECO2
j Pi,j,s,t,ωhs ≤ C̃O

cap

t,ω (6.10)

∑
g,s

HgPi,g,s,t,ωhs ≤ g̃max
t,ω (6.11)

ζ is the discount factor and T is the planning horizon. The objective function (6.1) is

composed of the total investment cost caused by the additions of new generating capacity

Capadd, the total operating cost which is the sum of the fixed (rent, water use, facility services)
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and variable operating (depends on actual energy production) cost. Also, the salvage value is

maximized to guarantee the installed capacity has a value in the end of the planning horizon.

I is the per-MW investment costs of each technology, OM f is the fixed O&M cost, OMv is

the variable O&M cost, and FC is the fuel cost for coal, natural gas, and uranium. SV is the

salvage value of each unit in the end of the planning horizon and is assumed to be a percentage

of the investment cost.

Capt, the installed capacity available throughout period t, as shown in (6.2), is continuously

updated balancing the capacity investments or additions Capadd and the deterministic retire-

ments of capacity Capret
i,j,t starting period t, and the period t−1 cumulated capacity Capi,j,t−1.

At t = 0, capacity is the existing infrastructure at that moment as shown in (6.3).

Total capacity of the system must satisfy reserve margin r with respect to peak demand

d̃i,peak,t as described in eq. (6.4). Power produced by each individual technology, especially

renewables, in different periods of a typical day is bounded by the capacity credit CC as in

(6.5). With CC, we consider resource (wind speed, solar radiation) reduced availability in each

of the defined LDC steps of a typical day. For WND and SUN, this availability is much smaller

than for the rest of the units.

Energy production is bounded by the capacity factor in (6.6). CF is the ratio between the

average power produced in a specific period and its nominal capacity. Given the variability of

renewable resources, both wind and solar CF s are the lowest. h represent the duration of each

LDC step in hours.

Total power generation plus (minus) inports (exports) of power, expressed using angular

differences, coming into (leaving from) every region must be enough to satisfy demand at every

step of the LDC. The demand balance constraint is expressed in terms of the voltage angles

of buses that are actually connected to the demand bus in consideration as described in (6.7),

with b′i,k =
∑

l blSi,lSk,l.

The power flowing by each path in the network is bounded by the thermal limits on the

transmission lines. If flows are approximated and expressed in terms of angular differences,

maximum (and minimum) flow constraints are as shown in (6.8). S represents the network

connectivity matrix, b line susceptances in per unit, and Sbase the base power of the system.
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Constraint (6.9) reflects a renewable portfolio standard. It guarantees that at least a per-

centage ρ of the energy produced must come from renewable resources in the scenarios where it

applies. When it does not apply, we set ρ = 0. In constraint (6.10), a cap in carbon emissions is

established. ECO2 is the amount of CO2 emissions per unit of energy each technology produces.

If the scenario does not consider this cap, C̃O
cap

= +∞. Uncertainty in natural gas reserves

is modeled in (6.11). It annually limits the use of gas. When it does not apply, gmax = +∞.

6.4 Flexibility

In the works Zhao et al. (2009) and Zhao et al. (2011), the concept of flexible planning was

introduced supported by the idea of adaptation costs. For each scenario, the optimal planning

solution is computed and is referred to as a candidate. The flexible system is chosen among

this set of candidates as the one that minimizes the worst-case adaptation cost.

Although the computation of the flexible system is straightforward, the final solution has

some disadvantages. For example, there are some scenarios whose solutions dominate the rest.

We mean by dominance a solution that is always chosen as the most flexible given that the

cost of any other solution to adapt to the dominant is very high; and the cost of the dominant

to adapt to other solution is very low. Also, the solution based on candidates is very sensitive

to the selection of scenarios. If the set of scenarios changes, so does the set candidates, and

therefore so does the final solution.

Our approach does not choose a solution, but instead, our approach designs it. The flexible

system is part of the set of decision variables in the optimization model. Also, we do not obtain

dominant solutions since the formulation guides the model to choose a “central” solution.

Therefore the sensitivity to the choice of scenarios is much less. Scenarios are only used to

train the model, and once a good set of representative scenarios —or cluster— is used, the

changes in the solution are minimum.

6.4.1 Flexible planning model —conceptual description

Fig. 6.2 illustrates our concept of finding a flexible solution. Basically, we want to find a

trajectory xft , ∀t which is “close” to each of the scenario feasibility sets. The optimal solution
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Figure 6.2: Concept of flexible solution

under scenario ω ∈ Θ is depicted as x∗ω. Each of them perform well in the scenario they were

designed for, they do not constitute any input for our model.

We assume the existence of a common power system xf , a core, that can be adapted to any

condition. To guarantee adaptation, we force xf to adapt to a predefined set of scenarios. This

consists of adding to or substracting from xf capacity in the direction ∆xω such that the new

adapted power system xf + ∆xω performs well under the local uncertain conditions of scenario

ω. The criterion to achieve flexibility, in addition to the minimization of the investment cost of

xf , consists of the minimization of the AC
∑
ω Iω∆xω (that is, the total “distance” weighted

by the per-MW investment cost) plus the cost of operating each adapted system. Each of

the re-expanded systems do not necessarily coincide with the optimal solutions x∗ω since the

re-investment starts from xf and not from zero.

6.4.2 Maximizing future flexibility

The resulting optimization problem is as follows:

minimize
Capadd,P,δ

∑
t,i,j,ω

ζt−1Ĩi,j,t,ωCap
add
i,j,t
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+
∑
t,i,j,ω

ζt−1

(
OM f

j,tCap
ω
i,j,t +OMv

j,t

∑
s

Pi,j,s,t,ωhs

)
(6.12)

+
∑

t,i,f,s,ω

ζt−1F̃Ci,f,t,ω

 ∑
m∈Ψf

HmPi,m,s,t,ωhs

− ζT−1
∑
i,j,ω

S̃Vi,j,ω Cap
ω
i,j,T

+ β
∑
t,i,j,ω

ζt−1
(
Ĩi,j,t,ω∆Cap+

i,j,t,ω + R̃i,j,t,ω∆Cap−i,j,t,ω

)
︸ ︷︷ ︸

Adaptation cost

subject to:

Capfi,j,t = Capfi,j,t−1 + Capadd
i,j,t − Capret

i,j,t, ∀i, j, t,ω (6.13)

Capωi,j,t = Capfi,j,t + ∆Capi,j,t,ω, ∀i, j, t,ω (6.14)

And constraints (6.3), (6.4), (6.5), (6.6), (6.7), (6.8), (6.9), (6.10), (6.11) ∀ω ∈ Θ

The modified objective function (6.12) represents total investment and operational cost plus

a penalized adaptation cost. Capf (analogous to xf ) is the installed capacity of the flexible

system. Each ∆Capω (analogous to ∆xω) is a real number, therefore the adaptation cost

penalizes positive and negative adaptation actions through investment Ĩ and retirement R̃ cost

respectively. The coefficient β is used for controlling the level of flexibility in the solution.

Very small values of β produce Capf close to zero and large ∆Capω. The reason is that the

model prefers not to invest in core capacity but to adapt to any scenario at an apparent low

cost. Conversely, large values of β produce large values of Capf and ∆Capω close to zero. In

this case, adaptation is apparently too costly and therefore it is better to build core capacity.

Although solutions under large β tend to be robust, they are not practical to implement given

the significant amounts of investments. Thus, a balance between investment and adaptation

cost implies a good selection of β.

Constraint (6.13) represents the updating process of the flexible capacity; whereas constraint

(6.14) shows how the system capacity of each scenario is updated. Basically, the flexible system,

characterized by Capf , grows in different directions determined by ∆Capω in order to satisfy

the conditions of each scenario. The rest of the constraints, from (6.3) to (6.11), specify each

year’s operational problem under all of the scenarios. This is as if we were running in parallel

different power systems —defined by Capωi,j,t— to analyze their performance.
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6.5 Numerical results

The model proposed is tested on the portfolio investment problem of a 40-year planning

five-region US model using 20 2-year periods. The portfolio consists of 13 different technologies

including renewables, fossil and alternative fuel production technologies.

Global uncertainties and scenario clustering

Global uncertainties can define an investment pattern throughout the planning horizon.

However, detecting when an uncertainty is global may require heuristics and is a process that

depends on the particular application. In this work, when a change in an input parameter

produces a significantly different technology portfolio from the benchmark, it is considered a

global uncertainty.

The benchmark plan is computed assuming data realizations such as Low (L) or High (H) gas

price (GP), L or H demand (D) growth rates, L or H wind investment cost (WC), imposition or

not of natural gas production limits (GPL), COcap
2 , and Renewable Portafolio Standards (RPS).

Although other uncertainties like investment costs of all other technologies, coal and uranium

price, capacity credit, and capacity factor are also considered via uncertainty sets, we only

describe the parameterization of global and their corresponding local uncertainties.

For those realizations of global uncertainties that can be parameterized by uncertainty sets,

we employ three different models to characaterize their growth. In each model, χt,real is the

central value of the global uncertain variable at year t under realization real, χ2009 the 2009

(t = 1) assumed value, and χ̂real the variability of χ under realization real. Since we consider

two realizations for each global uncertainty, real can be either “L” and “H”, or “Yes” and

“No”. µ is the annual change rate in exponential models or slope in the linear model, ξ the

variability quantified as a fraction of the central value of the uncertainty, and ϑ the annual rate

at which the variability changes. The models are as follows:

1. Exponential growth:

χt,real = χ2009 (1 + µreal)
t−1
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Table 6.1: Local uncertainty parameters

G. Uncertainty real
Parameters

χ2009 µreal ξreal ϑreal κreal

GP
L1) $3.5/MMBTU 2% 50% 0.1% N.A.

H2) $3.5/MMBTU 3% 50% -0.8% 7

GPL
Yes1) 6.7 tcf2 4% 10% 3% N.A.

No1) +∞ N.A. N.A. N.A. N.A.

D
L1) 725.96 GW 1.3% 5% 4% N.A.

H1) 725.96 GW 2.2% 3% 4% N.A.

RPS
Yes3) 9.1% 0.54%/y 16.7% 0% N.A.

No3) 0% 0%/y 0% 0% N.A.

COcap
2

Yes1) 2,270 MMeTon3 -3% 10% 5% N.A.

No1) +∞ N.A. N.A N.A. N.A.

WC
L1) $2.51 Mill/MW -1.4% 15% 1.3% N.A.

H1) $2.51 Mill/MW -0.11% 15% 1.3% N.A.

2. Asymptotic exponential growth:

χt,real = χ2009

[
κreal − (κreal − 1) (1 + µreal)

1−t
]

3. Linear:

χt,real = χ2009 + µreal (t− 1)

The variability model in each case is of the form χ̂t,real = ξreal (1 + ϑreal)
t−1 χt,real.

Parameters that determine each realization of global uncertainties are presented in Table

6.1. The superscripted indices attached to each global uncertainty denote the model in which

parameters will be used. The local uncertainty model of each global uncertainty χ is χ̃t,real =

χt,real + Ω ηt,real χ̂t,real, ‖ηreal‖1 ≤ 11.

After running a deterministic planning model under current power market conditions, a

benchmark solution is obtained (see Table 6.2 for details regarding the benchmark assumptions).

It has a strong tendency to invest in NGCC units across the country. However, when some

input parameters change, one at the time, so does the benchmark portfolio. For instance,

if GP is H, NUC power and a little coal power investments replace the NGCC observed in

1This model corresponds to the Manhattan uncertainty set presented in Chapter 2
2tcf = trillion cubic feet
3MMeTon = Million Metric Ton
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Table 6.2: Global uncertainty realizations for cases I and II

Cluster/scenario GP GPL D RPS COcap
2 WC

Benchmark L No L No No H

1 L No L No No L

2 L No L Yes No H

3 L No L Yes Yes L

4 L No H No Yes H

5 L Yes L Yes Yes H

6 H No L Yes Yes L

7 H No H No Yes L

8 H Yes L No No L

9 H Yes L Yes Yes H

10 H Yes H Yes No H

the benchmark. WND is an attractive technology under the scenario of WC being L and

when RPS are imposed. If growth rates of D change from L to H, investments increase in the

same proportion as the benchmark. When COcap
2 is implemented, WND, NUC, and NGCCCS

investments become attractive. Imposition of GL causes some NGCC to be replaced by some

NUC and coal-fired units in the central part of the country.

Combining each of the two categorical realizations of the six global uncertainties results in

26 = 64 scenarios4. We use the k-medoids clustering method (Kaufman and Rousseeuw (1990)),

fed by the 64 individual optimal investment vector solutions, to select the most representative

combination of global uncertainty categorical realizations. Every time the clustering tool is

run with a fixed number of clusters, given the randomness in its process, it usually returns a

different cluster. That is the reason why for a fixed number of clusters, a different solution can

be obtained.

Fig. 6.3a shows the average adaptation cost (AC) distributions resulting from running our

model of Section 6.4.2 (without local uncertainties) under different number of clusters. The

randomness in the clustering tool is the source of uncertainty in the boxplots. The dashed

blue line represents the (true) average AC when all the 64 scenarios are incorporated in the

model. By looking at Fig. 6.3a, when less than 8 clusters are selected, AC distributions are

4Scenario is defined as a list of realizations of the six global uncertainties under consideration; and cluster is
a list of representative scenarios
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Table 6.3: Computational features according to cluster sizes

Cluster size
Problem size DDP performance

Variables Constraints Iter. Rel. gap CPU time

25 218,800 348,120 34 9.5× 10−6 23 min

45 384,400 556,220 24 6.2× 10−6 34 min

64 555,760 889,080 39 7.2× 10−6 118 min

quite far from the blue line; but, as long as this number increases, the AC distribution (and

its corresponding optimal portfolios) converges to the true AC. To measure convergence, we

computed the average relative installed capacity deviation w.r.t. to the true portfolio and to

the average portfolio in each case. These quantities are referred to as “Rel. capacity dev. 1”

and “Rel. capacity dev. 2” respectively in Fig. 6.3b. These indicators measure how similar

—in average— the solutions of each cluster are. Again, the larger the number of clusters, the

closer to the true solution.

Also, we explored the behavior of our model when the number of clusters is high. Each of

the cases presented in Table 6.3 was run using the DDP decomposition method presented in

5.4. The ten-cluster case has 140,120 constraints and 89,200 variables. According to Table 6.3,

the size of the reduced model (10 clusters) is only 2.5% the size of the complete model, and the

reduced model is solved directly by Mosek in approximately 2 minutes. Thus, working with a

low number of clusters significantly reduces the computational effort.

An advantage of our flexibility model is that it can can find solutions that are very close

to the true optimal portfolio with a reduced number of clusters. With only ten clusters, the

relative deviations in capacity are less than 6.5%. Based on our experiments, additional clusters

are useful for polishing the solution but do not constitute a major change in the composition

of the optimal flexible portfolio.

Next, we present the design of energy portfolios via different approches. Case I illustrates

results obtained with the proposed model without local uncertainties, the focus is on balance

between robustness and flexibility through parameter β. In case II, the “discrete” flexible plan

of Zhao et al. (2009) is adapted to our capacity expansion planning problem. And case III

shows results of our proposed model considering local uncertainties and solved by ARO. In
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Figure 6.4: Tools interaction

order to clarify how these tools interact, Fig. 6.4 shows the paths taken to obtain the results

of each case.

Since a cluster is nothing but a representative subset of the entire scenario set, from now

on, we use the words “cluster” or “scenario” to mean the same.

6.5.1 Case I: Flexibility model with perfect knowledge of scenarios

Each of the scenarios and their attributes are presented in Table 6.2. Not only did we

choose to work with 10 scenarios due to the reduced computational effort, but also due to the

accurate solution they produce. First at all, we focus on balancing adaptation and investment

cost (see “Av AC” and “Av IC” respectively). Fig. 6.5 shows the tradeoff between adaptation

and investment costs caused by changes in β. For small β there are no investments at all

since adaptation is apparently cheap. The adaptation cost plotted represents the average cost

needed to adapt to one scenario at some point in time. Large values of β lead to more robust

systems where little adaptation is needed. Robustness is achieved by having significant installed

capacity of NGCC, NUC, and WND. This flexible system changes smoother with β as depicted

in Fig. 6.5.

Total system investments and capacity are plotted in Figs. 6.6a and 6.6b respectively.

β = 0.6 generates a flexible system whose installed capacity is 1,694 GW, close to the maxium

peak demand modeled in 2049, which would be above 1,600 GW. The flexible portfolio suggests

to invest in NUC (mostly in the West and South-East), WND (in the central part of the

country), and natural gas (NGCC and ACT) units (in the east coast). Investments in NGCC

units are necessary to replace the retirements by 2033 assumed in our data5. In summary,

5Capacity retirements are assumed based on the units lifetime and time of operation
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Figure 6.5: Flexible system capacity and costs tradeoff
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Figure 6.7: Final installed capacity of selected clusters

constructing a flexible system implies keeping quite constant NGCC, increasing NUC, WND,

and combustion turbines capacity; and retiring coal. The resulting system is robust to any

scenario where demand is low and adaptable to those with high demand. The flexible system

invests up to year 2040, after that year it is better off to “see” the realized scenario and adapt

the system to it.

6.5.2 Case II: The flexibility approach of Zhao et al. (2009)

Fig. 6.7 shows the ten representative portfolios resulting of individually optimizing the sys-

tem assuming the occurrence of each of the ten selected scenarios of Table 6.2. Scenarios (1 and

2) with low GP; and without GPL and CO2 regulation notably favor the investment in NGCC;

however, the combination of carbon caps and low gas price is interesting for installing NGCC

with carbon sequestration capacity. Imposition of carbon emission caps and RPS support the

construction of WND power. These portfolios are the candidates we use for determining the

flexible system according to the method exposed in reference Zhao et al. (2009).

The objective function is computed for different values of β analogously to our objective

function (6.12). Actually we use eq. (6.15):

f (xν , β) =
∑
ω∈Ω

(ICω (xν) +OMω (xν→ω)) + β
∑
ω∈Ω

ACω (xv→ω) (6.15)
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Figure 6.8: Optimal discrete portfolio with respect to β

The adapted solution xν→ω is obtained by adapting the optimal portfolio xν ,ν ∈ Θ to each

other scenario ω using an adaptation optimization model. This model optimizes the strategies

of adapting a candidate to an scenario, and provides the re-investment decisions needed to

efficiently perform under the new scenario by minimizing both the adaptation AC(x) and

operational OM(x) costs. The investment cost IC(x) of each candidate xν is computed under

all of the realizations of investment cost of all scenarios. Then, the flexible system among the

candidates is selected as6:

f∗ (β) = min
ν=1,...,10

{f (xν , β)}

Varying β we “jump” among the candidates to select the best that minimizes f(xν , β).

Fig. 6.8 shows the optimal portfolios as a function of β, which are nothing but an appropriate

selection among the ten candidates. Even small changes in β lead to choose a portfolio that was

designed under completely different data assumptions. In other words, solution is discontinuous

in β.
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6.5.3 Case III: Flexible planning under imperfect knowledge of scenarios

The scenarios selected to train the model were selected as explained previously. We observed

that with a ten-scenario cluster the flexible solution shows little statistical variability. To

reduce the conservatism level, linear decision rules for voltage angles as function of demand are

implemented. Refer to Chapters 4 and 5 for additional details in adjustable robust optimization.

Since this design is robust to all local uncertainties, it is larger in size than the flexible system

of case I as shown in Figs. 6.9a and 6.9b. The portfolio show was obtained setting β = 0.35.

This system invests more in WND in the west coast. The reason is that it is exposed to more

economic risk, especially in gas price, due to the modeling of local uncertainties, whereas the

model of case I is not. WND and NUC power seems to absorb risks of local uncertainties of

the global scenarios such as COcap
2 , GPL, RPS, and GP. Similar to the behavior in Case I,

investments are observed until 2042. After that year, it is more optimal to adapt to different

scenarios, if necessary, than to install more capacity.

A key advantage of this model compared to cases I and II is the satisfactory performance

under realistic conditions. To see what the key difference between the systems of case I and III

is, we simulate the actual evolution of the power sector where the decision maker updates the

investment decisions by using a folding horizon approach.

6.5.4 Folding horizon simulation

Fig. 6.10 is a flow diagram of one iteration of the folding horizon simulation. In each iter-

ation, a 40-year trajectory of global uncertainty realizations is obtained via two-state discrete

time Markov chains. To decide whether the flexible designed needs adaptation to the circum-

stances proposed by the Markov chain or not, a robustness test is performed by simulating

multiple times a production cost model (plus constraints that depend on the global uncertainty

realizations) using random data generated from realizations of local uncertainties. This test

can help to potentially reduce the cost of the final plan since adaptation might be not necessary

when the design succeds the test, which is more likely in the ARO-based design. Success or

6The work Zhao et al. (2009) actually minimizes the worst-case adaptation cost rather than the penalized
total cost. However, for our purposes, such a difference does not affect any of our conclusions
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Figure 6.10: One iteration of the folding horizon simulation



www.manaraa.com

112

L H 

L 

No 

L 

H 

Yes 

H 

GP GPL 

D RPS 

CO2 WC 

.5 

.35 

.07 .5 

.7 

.85 

.93 

.87 

.8 

.15 

.8 

1 

1 

1 

.7 

.3 

.15 

.13 

.2 

.3 

No 

No 

Yes 

Yes 

.2 

Figure 6.11: Markov chains

failure is determined by the EENSP, which we define as the expected ratio between the total

energy not served and realized energy demand. Only when the test is not passed, a single

period planning model is run to determine both re-invesments needed and its corresponding

(adaptation) cost. Since re-investments decisions are actually implemented, the initial flexible

plan has partially changed and therefore needs to be updated using the proposed flexibility

model. This recursive updating process is known as folding horizon. The system is exposed to

different Markov chain trajectories so as to get stable statistics related to the adaptation cost.

Markov chains are used to model the evolution of each global uncertainty. They are con-

sidered to be independent, although that is not necessarily the case. We model six two-state

discrete time Markov chains as illustrated in Fig. 6.11. Each number in the plot represents

the transition probability among states. Those correspondng to GPL, RPS and COcap
2 global

uncertainties are modeled with an absorbing state. When the policy is actually implemented,

it is assumed to hold up to the planning horizon, at least. Each of these three chains is started

at the “No” state, and according to its transition model, after some time the “Yes” state is

achieved. This (hitting) time is also a random variable resulting in a geometric distribution;

and as an statistical fact, the expected time to get to the absorbing state is the inverse of the

probability of implementing the policy. For instance, the assumed expected time to implement

the RPS policy is 1/0.133 = 7.5 periods (15 years.)

A summary of the simulation results is presented in Table 6.4. In here, the average annual
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Table 6.4: Folding horizon simulation results

Model
Simulation Optimization

IC($bill) AC($bill/y) IC($bill) AC($bill/y)

Case III
1,789.9 11.3 2,020.2 16.4

(88.7) (6.0) (49.9) (26.2)

Case I
678.6 36.2 1,452.2 4.1

(107.8) (7.2) (46.5) (6.5)
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Figure 6.12: Average yearly adaptations of ARO based designs



www.manaraa.com

114

adaptation costs is averaged over every simulated trajectory of uncertainties. On the other

hand, as expected, the mean adaptation cost of the ARO plan (case III) is lower than the

mean adaptation cost of the initial design —see AC under label “Optimization” in Table 6.4—

given the good performance of the system. Unlike the ARO based plan, the Deterministic

model (case I) performs poorly under every chain trajectory. That is the reason why the

adaptation cost ends up so high compared to the obtained in the initial optimization. AC in

the simulation are such that the EENSP is lower than a threshold value (see Fig. 6.10). Fig.

6.12 shows the average number of adaptations per year performed by the ARO based model.

In the worst-case situation, 0.66 adaptations per year were performed; however, during the first

11 years the initial designed system performed well in any of the 50 trajectories. By taking

the average over the trajectories, we observed 4.4 adaptations in 40 years (or 0.11 adaptations

every year), which is approximately an adaptation every 9.2 years. Since the per-year cost of

each adaptation is $11.3 billions in average (see Table 6.4), it roughly means that $103.7 billions

would be needed every 9 years for correcting initial planning decisions. If lower adaptation cost

is desired —although higher investment cost, a larger β can be selected in the optimization

process.

Although the investment cost of the deterministic model is significantly lower than the ARO

model, it has to employ excessive adaptation processes to meet the robustness EENSP thresh-

old. This recurrent adaptation is not convenient given timing constraints, and re-investment

decisions usually have to be implemented quicker than those made long time in advance. These

adavantages of the RO model compared to the deterministic are the reasons why the two-level

model of uncertainty should be considered in long-term studies.

6.6 Conclusions

We present a novel methodology that obtains robust and flexible future capacity expansion

plans under diverse types and sources of uncertainty. Uncertainties are classified as global and

local according to the impact. Global uncertainties allow us to both create scenarios and train

the flexibility-based planning model; whereas local uncertainties allow us to both model the

level of imperfect knowledge within each scenario and create uncertainty sets. Our methodology,
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rather than chooosing the most flexible plan among a set of candidate solutions, actually designs

a flexible system by minimizing its future adaptation cost to any other scenario’s conditions.

This reduces significantly the dependence on the choice of scenario. The decision maker can

balance the investment and adaptation cost by properly selecting a parameter that controls the

degree of flexibility and global robustness of the solution. Results show that a flexible system,

i.e., adaptable to future big-impact uncertainties like drastic changes in gas price, carbon

regulation, and renewable portfolio standards, is achievable at a reasonable low investment

costs with a low number of re-investment decisions. A folding horizon process where global

uncertainties are guided by stochastic processes was performed to measure more realistically

the degree of flexibility of the system and its cost. By modeling local uncertainties via ARO,

the evolution of the system can be even less costly than what is estimated before the actual

system operation.
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CHAPTER 7. CONTRIBUTIONS AND FUTURE WORK

Traditionally, planning tools have been dedicated valuable efforts to model the physical and

economic phenomena involved in power systems. However, given its size and interdependencies

with multiple sectors, the evolution of power systems is notably sensitive to multiple sources of

uncertainties. The world systems are dynamic; the economy of the country affects the power

system economics; policy controls regulations; the environment and its relationship with the

power sector is currently a topic of debate; reserves of fossil fuel are not infinite; green power

resources are highly volatile; and energy demand keeps growing. All of these issues motivated

that this work has focused on studying and proposing different generating capacity expansion

planning tools for modeling a more robust and flexible evolution of the power system.

7.1 Contributions of this work

• Classification of uncertainties as global and local

Independently of their nature —random or nonrandom, uncertainties were classified as

global and local according to the impact. This partition was found more adequate to

address robustness and flexibility in the generation expansion planning. Global uncer-

tainties allowed us to both create scenarios and train the flexibility-based planning model;

whereas local uncertainties allowed both modeling the level of imperfect knowledge within

each scenario and creating uncertainty sets. Results presented in Chapters 3–5 focus on

the modeling of uncertainty sets within a specific collection of global uncertainty realiza-

tions. Chapter 6 addresses the modeling of local within global uncertainties driven by

the concept of flexibility.

• Model of imperfect knowledge of scenarios
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Traditionally, uncertainty–related tools assume perfect knowledge of scenarios. Indeed,

scenarios are formed by sets by a finite number of random samples of each uncertainty.

However, a drawback of this assumption relies on the sensitivity of the solution with

respect to the sampling process. This in turn generates another uncertainty. In Chapter

6 we have shown that by assuming the decision maker does not know each of the scenario

attributes perfectly, he/she can make use of uncertainty sets formed by local uncertainties

proper of each specific scenario.

• Robust optimization for power system capacity expansion planning

Robust optimization, a state–of–the–art methodology that efficiently models multiple

uncertainties by means of uncertainty sets, was introduced for solving capacity expansion

problems. RO can be used to model either random or nonrandom uncertainties; however,

we concluded that uncertainty sets are better suited for modeling of local uncertainties or

imperfect knowledge in high-impact uncertainties. The facts that probability distributions

of data —hard to obtain— and that only bounds of uncertain data are needed, and the

computational tractability, show that RO is a promising complementary tool for power

system planning.

• Affinely adjustable robust optimization in power system capacity expansion

planning

An uncertain version of the capacity expansion problem where all of the decision vari-

ables were parameterized as affine functions of uncertain data was proposed. This model

is known as affinely adjustable robust optimization. Actual investments depending on

fuel prices and analysis variables (power generation, voltage angles) depending on peak

demand were capable of reducing the price or robustness usually faced by standard/static

RO. One of the key advantages of this approach is that it is not necessary to explicitly

represent scenario trees given the continuous model of the uncertainties. Since this is an

improvement of RO for multi-stage optimization, it “enjoys” the same features of RO.

• Dual dynamic programming for solving adjustable robust optimization

Like any tool that models uncertainty is computationally intensive, so is the capacity



www.manaraa.com

118

expansion planning problem when multiple uncertainties and adjustable investment de-

cisions are implemented. Also, as long as the planning horizon increases, so does the

problem size. It is important to decompose the optimization model into several pieces

in an appropriate way. The uncertain planning model shown in Chapter 4 has been

transformed in Chapter 5 to make it suitable and solvable through DDP, a Benders-like

decomposition method in which a continuous forward and backward optimization is per-

formed in each iteration. Chapter 6 also shows some results obtained with the DDP

algorithm.

• Robust and flexible planning

When it comes to consider global uncertainties in planning, it is expensive constructing

a robust infrastructure that can absorb the entire risk. This motivated our search for

alternative infrastructures that are flexible under global uncertainties. We proposed a

model that designs —rather than choosing— a flexible system by minimizing the future

adaptation cost to any other scenario’s conditions; and at the same time the model reduces

significantly the dependence on the choice of scenario. In our results, it was shown that

the models that actually consider the model of local uncertainty within scenarios are more

flexible than those that do not.

7.2 Future work

Based on the findings of this work, some aspects that lead to improve these efforts as well

as future work on power systems under uncertainties are summarized next:

• Energy and transportation infrastructure

The uncertainty modeling techniques developed in this work can be aimed to expansion

models not only of the power sector, but also of the energy and transportation sectors as

it has been done in Quelhas (2006); Gil (2007); Ibanez (2011). All of these efforts would

require more data and significant modeling transformation to add the concepts developed

in this work.
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• Data improvement

The studies shown throughout this work can be expanded to a larger version of the US

system. However, more disaggregated data are needed to accurately model the geograph-

ical interdependencies.

• Transmission planning

Probably, the evolution of the US power system would be more optimal if transmission

expansion was cooptimized with generation expansion. This cooptimization along with

modeling of any type of uncertainty can also provide flexible transmission corridors that

can be extended (adapted) in the future if necessary.

Next bullets are of particular interest and may constitute part of my future research activ-

ities:

• Refinement of renewables variability models

Although renewables variability has been addressed in the expansion model, a better

modeling of wind, solar and hydro outputs can provide more refined planning solutions.

Since these technologies follow weather patterns, there exists historical data that allows

improving their corresponding models in the DCOPF.

• Hydrothermal coordination

The hydrothermal coordination faces the uncertainty of water inflows, and it has been

usually addressed by scenario analysis. However, with the modeling tools presented in

this work, the problem can be solved more efficiently. And confidence intervals based

on historical information of water inflows can be used to obtain less risky generation

schedules, specially designed for drought seasons.

• Security constrained optimal power flow

Contingencies in OPF have been traditionally modeled explicitly, i.e., the security-constrained

OPF models create an imaginary system under the presence of the contingency. However,

this is computationally expensive in the case of large power systems; even more in the

general n − k case. Through robust optimization methods it might be possible to write
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an optimization problem with k element outages. A first attempt to this approach in unit

commitment problems is presented by Street et al. (2011).

• Optimal bidding in power markets

Price–taker power producers daily play in the day-ahead power market by submitting

price and quantity offers. However, they do not know in advance their opponents’ strate-

gies; this imperfect information generates a price uncertainty which in turn will affect

their profits. Although this is more a game theory problem, robust optimization can be

used to create price–quantity offers by reducing the risk due to price volatility. Initial

findings on this topic are presented in Baringo and Conejo (2011).
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APPENDIX A. TRANSFORMING THE AARC INTO A DDP

PROBLEM

In this section, we develop a lemma and a corollary that will help us to obtain a DDP model

of the AARC.

Lemma 1. Let f0 : Rn 7→ R a convex function, T the planning horizon, Dτ an mτ×n instance

matrix of the set of matrices {D1, D2, . . . , DT }, x the decision vector. Let the following convex

optimization problem:

minimize
x∈Rn

f0 (x1, . . . , xT )

subject to a>t xt + max
{

[D1x1; . . . ;Dtxt]
>
}
≤ bt,

∀t = 1, . . . , T

(A.1)

then, optimizing (A.1) is equivalent to optimizing

minimize
xt∈Rn,y∈RT ,v∈RT−1

+

f0 (x1, . . . , xT )

subject to a>t xt + yt ≤ bt, ∀t = 1, . . . , T

Dtxt ≤ yt, ∀t = 1, . . . , T

yt − yt−1 − vt = 0, ∀t = 2, . . . , T

(A.2)

Proof. The product Dτxτ is an mτ column vector. Then, operator max(·) is taking the maxi-

mum out of an array whose dimension is
∑t

τ=1mτ . Let y1 be

y1 = max
{

(D1x1)>
}

and let y2 be
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y2 = max
{

[D1x1; D2x2]>
}

= max
{[
y1, (D2x2)>

]}
If we move forward applying this idea up to time t, we find that:

yt = max
{[
yt−1, (Dtxt)

>
]}

which is exactly the second term in the LHS in the constraint of problem (A.1). At every stage

use the fact that max(a, b) ≥ a and max(a, b) ≥ b to obtain

yτ ≥ yτ−1, and yτ ≥ Dτxτ , ∀τ = 2, . . . , t

Now, problem (A.1) becomes

minimize
x∈Rn,y∈RT

f0 (x1, . . . , xT )

subject to a>t xt + yt ≤ bt, ∀t = 1, . . . , T

yt ≥ yt−1

yt ≥ Dtxt, ∀t = 1, . . . , T

(A.3)

If nonnegative slack variables {vt}Tt=2 are used to express the time coupling constraints,

(A.3) can be transformed into (A.2).

Corollary 2. Let χ ⊆ RnT×1 be a convex solution set of the decision variables x = [x1; . . . ; xT ]>

and f0 a convex function. The convex optimization problem

minimize
x∈Rn

f0 (x1, . . . , xT ) + max
{

[D1x1; . . . ;DTxT ]>
}

subject to x ∈ χ
(A.4)

is equivalent to
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minimize
x∈Rn,w∈R

f0 (x1, . . . , xT ) + w

subject to x ∈ χ

yT ≤ w

Dtxt ≤ yt, ∀t = 1, . . . , T

yt − yt−1 − vt = 0, ∀t = 2, . . . , T

(A.5)

Proof. Using epigraph concept of the second term in the objective function, problem (A.4) is

expressed as

minimize
x∈Rn,w∈R

f0(x) + w

subject to x ∈ χ

max
{

[D1x1; . . . ; DTxT ]>
}
≤ w

(A.6)

With lemma 1, problem (A.6) is converted into (A.5).



www.manaraa.com

124

APPENDIX B. ACRONYMS

AARC affinely adjustable robust counterpart

AC adaptation cost

ACT ddvanced combustion turbine

AEO Anual Energy Outlook

ARO Adjustable RO

BIO biomass

BTU British thermal unit

CEP Capacity expansion planning

CO Dual unit advanced pulverized coal

CO2 carbon dioxide

COcap
2 carbon cap

D demand

DCOPF direct current optimal power flow

DDP dual dynamic programming

DP dynamic programming

EENS Expected energy not served

EIA Energy Information Administration
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ENS Energy not served

EENSP Expected energy not served percentage

ENSP Energy not served percentage

ERP Expected robustness price

FRCC Florida Reliability Coordinating Council

GEO geothermal

GHG greenhouse gas

GP gas price

GPL gas production limits

H High

IGCCCS integrated gasification combined cycle with carbon sequestration

L Low

LDC load duration curve

MC Monte Carlo

MRO Midwest Reliability Organization

MSW municipal solid waste

NGCC natural gas combined cycle

NGCCCS natural gas combined cycle with carbon sequestration

NPCC Northeast Power Coordinating Council

NUC nuclear

O&M Operation and Maintenance
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OPF optimal power flow

OWND offshore wind

PF Perfect foresight

PoR price of robustness

RC robust counterpart

RFC Reliability First Corporation

RO Robust Optimization

RP robustness price

RPS Renewable Portafolio Standards

SA Sensitivity Analysis

SERC SERC Reliability Corporation

SP Stochastic Programming

SPP Southwest Power Pool

SUN solar thermal

TRE Texas Regional Entity

WAT hydro

WC wind investment cost

WECC Western Electricity Coordinating Council

WND wind
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LIST OF SYMBOLS

α0 Independent coefficient of the voltage angle rule

αd Coefficient that multiplies d of the voltage angle rule

αF
max

Coefficient that multiplies Fmax of the voltage angle rule

β Investment and adaptation cost trade-off parameter

β0 Independent coefficient of the power generation rule

βFC Coefficient that multiplies FC of the power generation rule

ω Index for referring to an element of Θ

χ Representation of global uncertain variable

∆Capi,j,t,ω Direction of capacity adaptation

ηFC Fuel cost primitive uncertainty vector

ηd Demand primitive uncertainty vector of

ηFmax Transmission capacity primitive uncertainty vector

γ0 Independent coefficient of the investment decision rule

γFC Coefficient that multiplies FC of the investment decision rule

χ̂ Representation of local uncertainty of χ under realization real

â Uncertainty of data vector a

λ Factor by which each uncertainty â is multiplied
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ρ̃ Minimum level of renewable penetration

g̃max Maximum natural gas production

C̃O
cap

Carbon cap

F Fuel set

L Transmission path set

S LDC step set

T Time stage set

U General uncertainty set

Z Primitive uncertainty set

Ω General uncertainty budget

ΩCC Uncertainty budget in credited capacity constraint

ΩCF Uncertainty budget in capacity factor constraint

Ωd Uncertainty budget in demand constraint

ΩFC Uncertainty budget in fuel cost

ΩInv Uncertainty budget in investment cost

ΩO&M Uncertainty budget in O&M cost

Ωobj Uncertainty budget in objective function

z Upper bound of the objective function in DDP algorithm

Φ Region set

π General Lagrange multiplier

Ψ Technology set
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ΨF Fuel-based technology set

ΨNF Nonfuel-based technology set

σ Objective function protection term (risk)

Θ Scenario set formed by all the combinatios of each global uncertainty

θ Voltage angles

z Lower bound of the objective function in DDP algorithm

ζ Discount factor

A General data matrix

a General uncertain data vector

B General data matrix

b Line susceptances

c General cost vector

Cinv Investment cost

Cop Operational cost

Cap Installed capacity

Capadd Capacity investment or additions

Capexisting 2009 installed capacity

Capret Capacity retirements

Capf Flexible capacity

Capω Adapted capacity

CC Capacity credit
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CF Capacity factor

d Demand

DNS Demand not served

E General data matrix

ECO2 Amount of CO2 emissions per unit of electric energy produced

F General data matrix

f Element of F

Fmax
l,t Transmission capacity

FC Fuel cost

FOR Forced outage rate

G General data matrix

H Heat rate

h Duration of the LDC steps

hCC acum Slack variable of credited capacity constraints

hCC Slack variable of nonfuel based credited capacity constraints

hCF acum Slack variable of capacity factor constraints

hCF Slack variable of nonfuel based capacity factor constraints

hrisk1 Slack variable of fuel cost risk constraints 1

hrisk2 Slack variable of fuel cost risk constraints 2

hrisk Slack variable of objective function risk constraints

I Unit investment cost
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i, k, n Element of Φ

j Element of Ψ

l, l′ Element of L

m Element of Ψf

OM f Fixed O&M costs

OMv Variable O&M costs

P Power generation

p Future objective function in DDP algorithm

q General decision vector

R Unit retirement cost

r Reserve requirement

S Incidence matrix of the system

s, s′, v Elements of S

Sbase System base power

SV Salvage value

T Planning horizon

t, t′, τ Element of T

TC Total cost

u Element of ΨNF

x General decision vector

xf General flexible solution vector
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x0 Initial condition

y General decision vector

z General protection term

z2 res Auxiliar protection term of reserve constraints

zCC acum Protection term of credited capacity constraints

zCC Protection term of nonfuel-based credited capacity constraints

zCF acum Protection term of capacity factor constraints

zCF Protection term of nonfuel-based capacity factor constraints

zInv Protection term of minimum investment constraints

zres Protection term of reserve constraints

zd Protection term of nodal power balance constraints

zθmax Protection term of maximum voltage angle constraints

zθmin Protection term of minimum voltage angle constraints

zFmax Protection term of maximum transmission capacity constraints

zFmin Protection term of minimum transmission capacity constraints

zPmin Protection term of nonfuel-based minimum power generation constraints
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